首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Tropical montane cloud forests (TMCF) receive additional (‘occult’) inputs of water from fog and wind-driven rain. Together with the concomitant reduction in evaporative losses, this typically leads to high soil moisture levels (often approaching saturation) that are likely to promote rapid subsurface flow via macropores. Although TMCF make up an estimated 6.6% of all remaining montane tropical forest and occur mostly in steep headwater areas that are protected in the expectation of reduced downstream flooding, TMCF hillslope hydrological functioning has rarely been studied. To better understand the hydrological response of a supra-wet TMCF (net precipitation up to 6535 mm y−1) on heterogeneously layered volcanic ash soils (Andosols), we examined temporal and spatial soil moisture dynamics and their contribution to shallow subsurface runoff and stormflow for a year (1 July 2003–30 June 2004) in a small headwater catchment on the Atlantic (windward) slope near Monteverde, NW Costa Rica. Particular attention was paid to the partitioning of water fluxes into lateral subsurface flow and vertical percolation. The presence of a gravelly layer (C-horizon) at ~25 cm depth of very high hydraulic conductivity (geometric mean: 502 mm h−1) intercalated between two layers of much lower conductivity (7.5 and 15.7 mm h−1 above and below, respectively), controlled both surface infiltration and delayed vertical water movement deeper into the soil profile. Soil water fluxes during rainfall were dominated by rapid lateral flow in the gravelly layer, particularly at high soil moisture levels. In turn, this lateral subsurface flow controlled the magnitude and timing of stormflow from the catchment. Stormflow amount increased rapidly once topsoil moisture content exceeded a threshold value of ~0.58 cm3 cm−3. Responses were not affected appreciably by rainfall intensity because soil hydraulic conductivities across the profile largely exceeded prevailing rainfall intensities.  相似文献   

2.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Despite considerable research performed on forested catchments in the Ouachita Mountains of Oklahoma and Arkansas, little information on hydrological processes in operation is available. Based on catchment physical characteristics, subsurface flow was thought to be an important hydrological process in the region. Therefore, this study was undertaken to determine the occurrence, rates, timing and volumes of subsurface flow, and to estimate the importance of subsurface flow as a streamflow generating process. Subsurface flow was collected from three hillslope sites on a 7.7 ha forested catchment. Hillslope sites drained through natural seepage faces located near stream channels. Subsurface flow was collected from three depths at each hillslope site, below the litter layer, below the a horizon, and within the B horizon (Bt21). Subsurface flow occurred and was measured during 11 of 31 rainfall events. Subsurface flow responded rapidly to the initiation of and to changes in intensity of rainfall at all depths. the rapid response was indicative of flow through soil macropores. B horizon subsurface flow commenced within 10 to 180 min of the initiation of rainfall. Multiple linear regression showed that the volume of subsurface flow generated during a given storm was directly related to rainfall depth and a 7-day antecedent precipitation index used to represent antecedent water content. About 67 per cent of the total subsurface flow collected during the study was produced in one large storm under wet antecedent conditions. the storm was equal to the 2-year, 24-hour storm for the region. Measured subsurface flow volumes were extended to the watershed scale to provide estimates of catchment-wide contributions to streamflow. It was estimated that subsurface flow contributed from 1 to 48 per cent of total quickflow measured at the catchment outlet. Based on the timing of subsurface flow, it was estimated that subsurface flow May, contribute up to 70 per cent of quickflow before and soon after peak flow.  相似文献   

4.
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions.  相似文献   

5.
The creation of a hydrophobic layer in the soil during ?res in semi‐arid environments inhibits the in?ltration of rainfall. This leads to increased rates of runoff and associated sediment transport. When the hydrophobic layer is deposited beneath the soil surface, a perched water table develops which may cause thin (1–2 cm) hillslope failures that are distinguishable from features caused by rilling and sheet?ow. Evidence for these failures was observed after a ?re near Santa Barbara, California. The amount of sediment eroded from some hillslopes was substantial, with 290 kg of sediment per metre width of hillslope delivered to the valley ?oor. The mechanics of these failures are examined with a numerical model that incorporates a stability analysis with subsurface ?ow routing along a typical hillslope pro?le. The model correctly predicts the location of the failures as well as the rainfall amount necessary to trigger them. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Traditional Boussinesq or kinematic simulations of interflow (i.e., lateral subsurface flow) assume no leakage through the impeding layer and require a no-flow boundary condition at the ridge top. However, recent analyses of many interflow-producing landscapes indicate that leaky impeding layers are common, that most interflow percolates well before reaching the toe slope, and therefore, the downslope contributing length is shorter than the hillslope length. In watersheds characterised by perched interflow over a low conductivity layer through permeable topsoil, interflow with percolation may be modelled with a kinematic wave model using a mobile upslope boundary condition defining the hillslope portion contributing interflow to valleys. Here, we developed and applied a dynamic interflow model to simulate interflow using a downslope travel distance concept such that only the active contributing length is modelled at any time. The model defines a variable active area based on the depth of the perched layer, the topographic slope and the ratio of the hydraulic conductivity of topsoil to that of the impeding layer. It incorporates a two-layer soil moisture accounting water balance analysis, a pedo-transfer function, and percolation and evaporation routines to predict interflow rates in continuous and event-based scenarios. We tested the modelling concept on two sets of data (2-year dataset of rainfall observations for the continuous simulation and a multi-day irrigation experiment for the event simulation) from a 121-m-long open interflow collection trench on an experimental hillslope at the Savannah River Site, South Carolina. The continuous model simulation partially represented the observed interflow hydrograph and perched water depth in the experimental hillslope with correlation coefficients of 0.85 and 0.35, respectively. Model performance improved significantly at event-scale analysis. The modelling approach realistically represents interflow dynamics in hillslopes with leaky impeding layers and can be integrated into catchment-scale hydrology models for more detailed hillslope process modelling.  相似文献   

7.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Catchment scale hydrological process studies in southern Chile are of special interest as little research at this scale has been carried out in this region. In particular, the young volcanic ash soils, which are typical for this area, are not well understood in their hydrological behaviour. In addition, extensive land use changes require detailed knowledge of hydrological processes in disturbed as well as undisturbed catchments in order to estimate resulting risks of erosion, eutrophication, floods and droughts. This study focuses on data collection and experimental determination of relevant processes in an undisturbed forested catchment in the Andes of southern Chile. The here gained understanding of runoff generation can serve as a reference for comparison with sites subject to human intervention, improving estimation of the effects of land use change. Owing to the lack of long‐term data for this catchment it was necessary to replace long time series by a multitude of experimental methods covering as many aspects of the runoff generation process as possible. The methods used in this investigation include: measurements of streamflow, rainfall, throughfall, water chemistry, soil water dynamics, groundwater dynamics, soil physics, soil mineralogy, geo‐electrical sounding, and tracer techniques. Methods and equipment used during field campaigns are described and evaluated for usefulness versus expenditure (labour and financial costs). Selected results and the hypotheses developed from these findings are presented. The results suggest the importance of fast processes for rainfall runoff response on the one hand as well as considerable dampening effects of a large subsurface storage on the other hand. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
In Mediterranean regions, hillslopes are generally considered to be a mosaic of sink and source areas that control runoff generation and water erosion processes. These hillslopes used to be characterized by a complex hydrological and erosive response combining Hortonian and saturation excess overland flows. The hydrological response of soils is highly dependent on the soil surface components (e.g. vegetation patches, bare soil, rock fragment cover, crusts), which each one of them is dominated by a certain hydrological process. One of these soil surface components, not widely considered in studies of soil hydrology under Mediterranean conditions, is the accumulation of litter beneath shrubs enhancing water repellency in soils. This study investigates the influence of soil surface components, especially the litter accumulated beneath Cistus spp., in the hydrological and erosive responses of soils on two Mediterranean hillslopes having different exposures. The study was performed by means of rainfall simulation experiments and the Water Drop Penetration Time for measuring water repellency of soils, both techniques being carried out at the end of summer (September 2010) with very dry soils. The results indicate that (i) soil surface components from the north facing hillslope are characterized by a more uniform hydrological and erosive response than those from the south‐facing ones; (ii) the water repellency is more influential on the hydrological response of the north‐facing hillslope due to a greater accumulation of organic rest on the soils as the vegetation cover is also higher; (iii) the south‐facing hillslope seemed to follow the fertility island theory with very degraded bare soil areas, which are the most generated areas of runoff and mobilized sediments; (iv) the experimental area can be considered as a threshold area between the semiarid and subhumid Mediterranean environments, with the south‐facing hillslope being comparable with the former and the north facing one with the latter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Todd Redding  Kevin Devito 《水文研究》2010,24(21):2995-3010
Rainfall simulation experiments by Redding and Devito ( 2008 , Hydrological Processes 23: 4287–4300) on two adjacent plots of contrasting antecedent soil moisture storage on an aspen‐forested hillslope on the Boreal Plain showed that lateral flow generation occurred only once large soil storage capacity was saturated combined with a minimum event precipitation of 15–20 mm. This paper extends the results of Redding and Devito ( 2008 , Hydrological Processes 23: 4287–4300) with detailed analysis of pore pressure, soil moisture and tracer data from the rainfall simulation experiments, which is used to identify lateral flow generation mechanisms and flow pathways. Lateral flow was not generated until soils were wet into the fine textured C horizon. Lateral flow occurred dominantly through the clay‐rich Bt horizon by way of root channels. Lateral flow during the largest event was dominated by event water, and precipitation intensity was critical in lateral flow generation. Lateral flow was initiated as preferential flow near the soil surface into root channels, followed by development of a perched water table at depth, which also interacted with preferential flow pathways to move water laterally by the transmissivity feedback mechanism. The results indicate that lateral flow generated by rainfall on these hillslopes is uncommon because of the generally high available soil moisture storage capacity and the low probability of rainfall events of sufficient magnitude and intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Spatial heterogeneity in the subsurface of karst environments is high, as evidenced by the multiphase porosity of carbonate rocks and complex landform features that result in marked variability of hydrological processes in space and time. This includes complex exchange of various flows (e.g., fast conduit flows and slow fracture flows) in different locations. Here, we integrate various “state‐of‐the‐art” methods to understand the structure and function of this poorly constrained critical zone environment. Geophysical, hydrometric, and tracer tools are used to characterize the hydrological functions of the cockpit karst critical zone in the small catchment of Chenqi, Guizhou Province, China. Geophysical surveys, using electrical resistivity tomography (ERT), inferred the spatial heterogeneity of permeability in the epikarst and underlying aquifer. Water tables in depression wells in valley bottom areas, as well as discharge from springs on steeper hillslopes and at the catchment outlet, showed different hydrodynamic responses to storm event rainwater recharge and hillslope flows. Tracer studies using water temperatures and stable water isotopes (δD and δ18O) could be used alongside insights into aquifer permeability from ERT surveys to explain site‐ and depth‐dependent variability in the groundwater response in terms of the degree to which “new” water from storm rainfall recharges and mixes with “old” pre‐event water in karst aquifers. This integrated approach reveals spatial structure in the karst critical zone and provides a conceptual framework of hydrological functions across spatial and temporal scales.  相似文献   

14.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   

15.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

16.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrological threshold behaviour has been observed across hillslopes and catchments with varying characteristics. Few studies, however, have evaluated rainfall–run‐off response in areas dominated by agricultural land use and artificial subsurface drainage. Hydrograph analysis was used to identify distinct hydrological events over a 9‐year period and examine rainfall characteristics, dynamic water storage, and surface and subsurface run‐off generation in a drained and farmed closed depression in north‐eastern Indiana, USA. Results showed that both surface flow and subsurface tile flow displayed a threshold relationship with the sum of rainfall amount and soil moisture deficit (SMD). Neither surface flow nor subsurface tile flow was observed unless rainfall amount exceeded the SMD. Timing of subsurface tile flow relative to soil moisture response on the shoulder slope of the depression indicated that the formation and drainage of perched water tables on depression hillslopes were likely the main mechanism that produced subsurface connectivity. Surface flow generation was delayed compared with subsurface tile flow during rainfall events due to differences in soil water storage along depression hillslopes and run‐off generation mechanisms. These findings highlight the substantial impact of subsurface tile drainage on the hydrology of closed depressions; the bottom of the depression, the wettest area prior to drainage installation, becomes the driest part of the depression after installation of subsurface drainage. Rapid connectivity of localized subsurface saturation zones during rainfall events is also greatly enhanced because of subsurface drainage. Thus, less fill is required to generate substantial spill. Understanding hydrologic processes in drained and farmed closed depressions is a critical first step in developing improved water and nutrient management strategies in this landscape.  相似文献   

18.
The variable source area (VSA) concept provides the underlying paradigm for managing phosphorus losses in runoff in the north‐eastern USA. This study sought to elucidate factors controlling runoff along two hillslopes with contrasting soils, including characterizing runoff generation mechanisms and hydrological connectivity. Runoff monitoring plots (2 m × 1 m) were established in various landscape positions. Footslope positions were characterized by the presence of a fragipan that contributed to seasonally perched water tables. In upslope positions without a fragipan, runoff was generated primarily via the infiltration‐excess (IE) mechanism (96% of events) and was largely disconnected from downslope runoff. Roughly 80% of total runoff originated from the north footslope landscape position via saturation‐excess (SE) (46% of events; 62% of runoff) and IE (54% of events; 38% of runoff) mechanisms. Runoff from the north hillslope was substantially greater than the south hillslope despite their proximity, and apparently was a function of the extent of fragipan representation. Results demonstrate the influence of subsurface soil properties (e.g. fragipan) on surface runoff generation in variable source area hydrology settings, which could be useful for improving the accuracy of existing runoff prediction tools. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
Finite element modelling of the saturated–unsaturated surface–subsurface flow mechanisms operative in a small salinized catchment in south‐western Australia was used to help define the flow system and explain the causes of waterlogging and salinization there. Data available at the site from a previous study were used to obtain a first approximation to the flow system. Altering the properties of some of the strata gave a closer calibration. It was found that the modelled saturated hydraulic conductivity of the B horizon in the duplex soil zone needed to be at least an order of magnitude lower than that measured in order to reproduce the perching conditions observed in the field. Also, the model indicated the influence of a doleritic dyke, whose presence was confirmed by field measurement. Our analysis showed that there were two main flow systems operating in the hillslope. The first, and most dominant, was the recharge occurring through the upslope gradational soil zone and percolating down to both the deeply weathered regolith and the basal aquifer. The second flow system is an unsaturated flow system operating in the high permeability A horizon in the downslope duplex soil zone. The first system is primarily responsible for the saline seepage zone in the valley bottom. The second contributes to the waterlogging and perching occurring upslope of the seepage zone. Vertical flow through the higher permeability B horizon in the gradational soil zone in the upper slopes is a major contributor of recharge. Recharge by flow through macropores occurs where, but only where, perched aquifers develop and allow the macropores to be activated. Areas with perched aquifers occurred in downslope locations and near a doleritic dyke located upslope. Thus, the area where macropore recharge occurred was not large. The recharge rate required to maintain the piezometric levels at present values is only about 30 mm/yr (about 5% of the annual rainfall). The piezometric levels under the upper part of the catchment varied greatly with only small changes in recharge rate. A 50% reduction in recharge rate had the effect of reducing the length of the seepage zone at the end of winter by 40%. Changes in recharge rate had little effect on the extent of the perched aquifer at the end of winter. Deep‐rooted perennial forages, shrubs or trees on the gradational soil zone in the upper part of the catchment and on the zones upslope of geological barriers to flow would be required to reduce the recharge and to allow for rehabilitation of the saline valley floor. Waterlogging associated with the perched water table in the bottom part of the catchment would be best addressed by tree plantations located just upslope of the salinized zone in the valley floor. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号