首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorine-, boron- and phosphorus-rich pegmatites of the Variscan Ehrenfriedersdorf complex crystallized over a temperature range from about 700 to 500 °C at a pressure of about 1 kbar. Pegmatite quartz crystals continuously trapped two different types of melt inclusions during cooling and growth: a silicate-rich H2O-poor melt and a silicate-poor H2O-rich melt. Both melts were simultaneously trapped on the solvus boundaries of the silicate (+ fluorine + boron + phosphorus) − water system. The partially crystallized melt inclusions were rehomogenized at 1 kbar between 500 and 712 °C in steps of 50 °C by conventional rapid-quench hydrothermal experiments. Glasses of completely rehomogenized inclusions were analyzed for H2O by Raman spectroscopy, and for major and some trace elements by EMP (electron microprobe). Both types of melt inclusions define a solvus boundary in an XH2O–T pseudobinary system. At 500 °C, the silicate-rich melt contains about 2.5 wt% H2O, and the conjugate water-rich melt about 47 wt% H2O. The solvus closes rapidly with increasing temperature. At 650 °C, the water contents are about 10 and 32 wt%, respectively. Complete miscibility is attained at the critical point: 712 °C and 21.5 wt% H2O. Many pegmatites show high concentrations of F, B, and P, this is particularly true for those pegmatites associated with highly evolved peraluminous granites. The presence of these elements dramatically reduces the critical pressure for fluid–melt systems. At shallow intrusion levels, at T ≥ 720 °C, water is infinitely soluble in a F-, B-, and P-rich melt. Simple cooling induces a separation into two coexisting melts, accompanied with strong element fractionation. On the water-rich side of the solvus, very volatile-rich melts are produced that have vastly different physical properties as compared to “normal” silicate melts. The density, viscosity, diffusivity, and mobility of such hyper-aqueous melts under these conditions are more comparable to an aqueous fluid. Received: 15 September 1999 / Accepted: 10 December 1999  相似文献   

2.
The study of re-homogenized melt inclusions in the same growth planes of quartz of pegmatites genetically linked to the Variscan granite of the Ehrenfriedersdorf complex, Erzgebirge, Germany, by ion microprobe analyses has determined high concentrations of Be, up to 10,000 ppm, in one type of melt inclusion, as well as moderate concentrations in the 100 ppm range in a second type of melt inclusion. Generally, the high Be concentrations are associated with the H2O- and other volatile-rich type-B melt inclusions, and the lower Be concentration levels are connected to H2O-poor type-A melt inclusions. Both inclusion types, representing conjugate melt pairs, are formed by a liquid–liquid immiscibility separation process. This extremely strong and very systematic scattering in Be provides insights into the origin of Be concentration and transport mechanisms in pegmatite-forming melts. In this contribution, we present more than 250 new analytical data and show with ion microprobe and fs-LA-ICPMS studies on quenched glasses, as well as with confocal Raman spectroscopy of daughter minerals in unheated melt inclusions, that the concentrations of Be may achieve such extreme levels during melt–melt immiscibility of H2O-, B-, F-, P-, ± Li-enriched pegmatite-forming magmas. Starting from host granite with about 10 ppm Be, melt inclusions with 10,000 ppm Be correspond to enrichment by a factor of over 1,000. This strong enrichment of Be is the result of processes of fractional crystallization and further enrichment in melt patches of pegmatite bodies due to melt–melt immiscibility at fluid saturation. We also draw additional conclusions regarding the speciation of Be in pegmatite-forming melt systems from investigation of the Be-bearing daughter mineral phases in the most H2O-rich melt inclusions. In the case of evolved volatile and H2O-rich pegmatite systems, B, P, and carbonates are important for the enrichment and formation of stable Be complexes.  相似文献   

3.
Experiments to define the critical curve for a series of silicate melts in equilibrium with a hydrous fluid were carried out in a hydrothermal diamond anvil cell. Silicate compositions studied were albite with several wt% excess Na2O, B2O3 and F2O-1. Complete miscibility between melt and water was observed at lower pressure and temperature conditions compared to pure albite for all compositions. For albite + excess Na2O, the critical curve had been lowered by 143 and 247 °C at 10 kbar for 5 and 10 wt% excess Na. For albite +5 and 10 wt% F, the difference at 10 kbar was 147 and 246 °C respectively, and for albite +5 and 10 wt% B differences of 168 and 262 °C were found. These results are likely to be additive, with the presence of more than one of the components depressing the critical curve to even lower temperatures and pressures. The results suggest that in complex pegmatitic systems, complete miscibility between melt and fluid may be important in the final stages of crystallisation. The unusual properties of fluid phases under conditions close to the critical curve in a silicate melt-water system may be essential for the enrichment of trace elements in pegmatites as well as for the formation of typical pegmatite textures.  相似文献   

4.
Strong tin enrichment in a pegmatite-forming melt   总被引:4,自引:0,他引:4  
To investigate processes of magmatic tin enrichment and cassiterite deposition, we studied the abundances of major, trace, and volatile elements in a large number of rehomogenized silicate melt inclusions in quartz and topaz from a pegmatite body at the Ehrenfriedersdorf Sn–W deposit. This deposit is associated with evolved Variscan granites of the central Erzgebirge, southeast Germany. The melt inclusions are peraluminous; the molar aluminum saturation index (ASI) ranges from 1.15 to 2.0, and many inclusions are characterized by a very high content of fluxing components and volatiles. Some inclusions contain more than 20 wt% of H2O, F, Cl, and P2O5, plus Li as well as very high levels of Sn. Some rare, highly evolved fractions of late-stage pegmatite-forming liquid at Ehrenfriedersdorf contained up to 7000 ppm Sn. The presence of hydrogen and methane in addition to water and carbon dioxide in the vapor phase of the melt inclusions suggests a very low oxygen fugacity for some fractions of magma. The extreme levels of tin, volatiles, and fluxing components in this magma had an important influence on processes of melt movement and cassiterite precipitation. Melts, like these, that are high in volatiles and alkalis (sum of Li2O, Na2O, K2O, Rb2O, and Cs2O is >8 wt%) have low densities (≤1.8 g/cm3), low viscosities (<10 Pa.s at 700 °C), facilitate relatively rapid diffusion of ions through melts, and hence are excellent solvents for extracting and transporting ore-forming elements. Received: 1 February 1999 / Accepted: 19 January 2000  相似文献   

5.
Extreme enrichment in H2O, B, P and F is characteristic of many evolved granites and pegmatites. We report experimental phase relations of a synthetic peraluminous pegmatite spiked with P2O5, B2O3 and F (5 wt% of each), Rb2O, Cs2O (1 wt% of each) and Li2O (0.5 wt%). Experiments were carried out in H2O-saturated conditions in cold-seal rapid-quench pressure vessels at 0.1-0.2 GPa. Crystallisation starts at about 820 °C with berlinite and topaz. Quartz appears at 700-750 °C. Topaz is replaced by muscovite at about 600 °C. At near-solidus temperatures (450-500 °C) amblygonite, lacroixite and a Cs-bearing aluminosilicate crystallise. In all charges aluminosilicate melt coexists with low-density hydrous fluid and hydrosaline melt. The latter is strongly enriched in Na3AlF6 and H3BO3 components. Experimental evidence of the liquid immiscibility and mineral reactions documented in our study offers new explanations of many enigmatic features of natural pegmatites.  相似文献   

6.
Fluids and melts have been trapped and analysed in high pressure experiments in the model mantle system MgO-SiO2-H2O at 6 to 10.5 GPa and 900 to 1,200 °C. The fluid/melt traps consisted of a diamond layer that was added to the experimental charge and was separate from the silicate phases. The recovered diamond traps were analysed by laser ablation - ICP - MS. Starting materials were synthetic mixtures of brucite, talc and silica with variable Mg/Si containing 11-31 wt% H2O. Experiments on a serpentine starting composition [Mg3Si2O5(OH)4] result in MgO/SiO2 weight ratios in the subsolidus fluids close to 1 at 6 GPa and close to 2 at 9 GPa. Melt compositions at 6 and 9 GPa have MgO/SiO2 ratios close to that of forsterite. At a single pressure the amount of dissolved silicate in the fluid increases steadily with increasing temperature up to 1,150 °C, where a sudden increase of both SiO2 and MgO is observed. This discrete step marks the solidus, which is more clearly developed at 6 than at 9 GPa. Thus, hydrous melts within the model mantle subsystem Mg2SiO4-Mg2Si2O6-H2O are chemically distinct from aqueous fluids up to at least 9 GPa, corresponding to 300 km depth. Extrapolation of the current data set implies that total convergence between fluid and melt along the solidus probably occurs at 12-13 GPa (~400 km), i.e. close to the Earth's mantle transition zone. Beneath cratons, interactions of hydrous fluids with upper mantle lithologies cause relative silica depletion (olivine enrichment) at depths greater than 200 km and silica (orthopyroxene) enrichment at shallower depths.  相似文献   

7.
. Cl solubility in evolved alkaline melts was investigated at 860-930 °C and pressures of 25 to 250 MPa using natural trachytes and a synthetic phonolite equilibrated with subcritical fluids in the H2O-(Na,K)Cl system (i.e. silicate melt coexisted with water-rich aqueous fluid and a saline brine). Fluid phase characteristics were identified by examination of fluid inclusions present in the run product glasses and the fluid bulk composition was calculated by mass balance. The Cl contents of trachytic glasses coexisting with subcritical fluids increase linearly with decreasing pressure from 250 to 25 MPa and range from 0.37 to 0.90 wt%; Cl in the phonolitic glass ranges from 0.35 to 0.59 wt%. These values are approximately twice those found in metaluminous rhyolitic melts under similar conditions. Variations from peralkaline to peraluminous composition has little effect on Cl solubility in trachytes, whereas it is a more important factor in phonolites. More generally, melt structure, in particular non-bringing oxygen, appears to strongly influence Cl solubility in silicate melts. The negative correlation between pressure and melt Cl content is governed by the large negative partial volume of NaCl in the vapour phase. No change in Cl solubility is observed between 200 and 250 MPa. Comparison of our experimental results with Cl abundance in glass inclusion and matrix glass from Italian volcanoes can be used to identify those eruptive products preserved in the geologic record which may have been associated with large Cl emissions.  相似文献   

8.
Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968–2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968–2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900–1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3–1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5?wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene and the presence of amphibole, also observed in basaltic andesitic tephra units, is due to crystallization at nearly water-saturated conditions and temperatures lower than 950 °C. The enigmatic two compositional groups previously known as low- and high-Al2O3 samples at Arenal volcano may be explained by low- and high-pressure crystallization, respectively. Using high-Al as signal of deeper crystallization, first magmas of the 1968–2010 eruption evolved deep in the crust and ascent was relatively fast leaving little time for significant compositional overprint by shallower level crystallization.  相似文献   

9.
Sediment Melts at Sub-arc Depths: an Experimental Study   总被引:14,自引:0,他引:14  
The phase and melting relations in subducted pelites have beeninvestigated experimentally at conditions relevant for slabsat sub-arc depths (T = 600–1050°C, P = 2·5–4·5GPa). The fluid-present experiments produced a dominant paragenesisconsisting of garnet–phengite–clinopyroxene–coesite–kyanitethat coexists with a fluid phase at run conditions. Garnet containsdetectable amounts of Na2O (up to 0·5 wt%), P2O5 (upto 0·56 wt%), and TiO2 (up to 0·9 wt%) in allexperiments. Phengite is stable up to 1000°C at 4·5GPa and is characterized by high TiO2 contents of up to 2 wt%.The solidus has been determined at 700°C, 2·5 GPaand is situated between 700 and 750°C at 3·5 GPa.At 800°C, 4·5 GPa glass was present in the experiments,indicating that at such conditions a hydrous melt is stable.In contrast, at 700°C, 3·5 and 4·5 GPa, asolute-rich, non-quenchable aqueous fluid was present. Thisindicates that the solidus is steeply sloping in PT space.Fluid-present (vapour undersaturated) partial melting of thepelites occurs according to a generalized reaction phengite+ omphacite + coesite + fluid = melt + garnet. The H2O contentof the produced melt decreases with increasing temperature.The K2O content of the melt is buffered by phengite and increaseswith increasing temperature from 2·5 to 10 wt%, whereasNa2O decreases from 7 to 2·3 wt%. Hence, the melt compositionschange from trondhjemitic to granitic with increasing temperature.The K2O/H2O increases strongly as a function of temperatureand nature of the fluid phase. It is 0·0004–0·002in the aqueous fluid, and then increases gradually from about0·1 at 750–800°C to about 1 at 1000°C inthe hydrous melt. This provides evidence that hydrous meltsare needed for efficient extraction of K and other large ionlithophile elements from subducted sediments. Primitive subduction-relatedmagmas typically have K2O/H2O of 0·1–0·4,indicating that hydrous melts rather than aqueous fluids areresponsible for large ion lithophile element transfer in subductionzones and that top-slab temperatures at sub-arc depths are likelyto be 700–900°C. KEY WORDS: experimental petrology; pelite; subduction; UHP metamorphism; fluid; LILE  相似文献   

10.
The behavior of tantalum and zirconium in pegmatitic systems has been investigated through the determination of Ta and Zr solubilities at manganotantalite and zircon saturation from dissolution and crystallization experiments in hydrous, Li-, F-, P- and B-bearing pegmatitic melts. The pegmatitic melts are synthetic and enriched in flux elements: 0.7–1.3 wt% Li2O, 2–5.5 wt% F, 2.8–4 wt% P2O5 and 0–2.8 wt% B2O3, and their aluminum saturation index ranges from peralkaline to peraluminous (ASILi = Al/[Na + K + Li] = 0.8 to 1.3) with various K/Na ratios. Dissolution and crystallization experiments were conducted at temperatures varying between 700 and 1,150°C, at 200 MPa and nearly water-saturated conditions. For dissolution experiments, pure synthetic, end member manganotantalite and zircon were used in order to avoid problems with slow solid-state kinetics, but additional experiments using natural manganotantalite and zircon of relatively pure composition (i.e., close to end member composition) displayed similar solubility results. Zircon and manganotantalite solubilities considerably increase from peraluminous to peralkaline compositions, and are more sensitive to changes in temperature or ASI of the melt than to flux content. A model relating the enthalpy of dissolution of manganotantalite to the ASILi of the melt is proposed: ∆H diss (kJ/mol) = 304 × ASILi − 176 in the peralkaline field, and ∆H diss (kJ/mol) = −111 × ASILi + 245 in the peraluminous field. The solubility data reveal a small but detectable competitivity between Zr and Ta in the melt, i.e., lower amounts of Zr are incorporated in a Ta-bearing melt compared to a Ta-free melt under the same conditions. A similar behavior is observed for Hf and Ta. The competitivity between Zr (or Hf) and Ta increases from peraluminous to peralkaline compositions, and suggests that Ta is preferentially bonded to non-bridging oxygens (NBOs) with Al as first-neighbors, whereas Zr is preferentially bonded to NBOs formed by excess alkalies. As a consequence Zr/Ta ratios, when buffered by zircon and manganotantalite simultaneously, are higher in peralkaline melts than in peraluminous melts.  相似文献   

11.
Geochemical data from melt inclusions in olivine phenocrysts in a picritic basalt from the Siqueiros Transform Fault on the northern East Pacific Rise provide insights into the petrogenesis of mid-ocean ridge basalts (MORB). The fresh lava contains ~10% of olivine phenocrysts (Fo89.3-91.2) and rare, small (<1 mm) plagioclase phenocrysts with subhedral to irregular shapes with a range of compositions (An80-90, An57-63). Melt inclusions in olivine phenocrysts are glassy, generally rounded in shape and vary in size from a few to ~200 µm. Although most of the inclusions have compositions that are generally consistent with being representative of parental melts for the pillow-rim glasses, several inclusions are clearly different. One inclusion, which contains a euhedral grain of high-Al, low-Ti spinel, has a composition unlike any melt inclusions previously described from primitive phenocrysts in MORB. It has a very high Al2O3 (~20 wt%), very low TiO2 (~0.04 wt%) and Na2O (~1 wt%) contents, and a very high CaO/Na2O value (~14). The glass inclusion is strongly depleted in all incompatible elements (La =0.052 ppm; Yb =0.34; La/Sm(n) ~0.27), but it has large positive Sr and Eu anomalies (Sr/Sr* ~30; Eu/Eu* ~3) and a negative Zr anomaly. It also has low S (0.015 wt%) and relatively high Cl (180 ppm). We suggest that this unusual composition is a consequence of olivine trapping plagioclase in a hot, strongly plagioclase-undersaturated magma and subsequent reaction between plagioclase and the host olivine producing melt and residual spinel. Two other melt inclusions in a different olivine phenocryst have compositions that are generally intermediate between 'normal' inclusions and the aluminous inclusion, but have even higher CaO and Sr contents. They are also depleted in incompatible elements, but to a lesser degree than the aluminous inclusion, and have smaller Sr and Eu anomalies. Similar inclusions have also been described in high-Fo olivine phenocrysts from Iceland and northern Mid-Atlantic Ridge. We suggest that the compositions of these inclusions represent assimilation of gabbroic material into the hot primitive magma. The localised nature of this assimilation is consistent with it occurring within a crystal mush zone where the porosity is high as primitive magmas pass through earlier formed gabbroic 'cumulates'. In such an environment the contaminants are expected to have quite diverse compositions. Although the interaction of primitive melts with gabbroic material may not affect the compositions of erupted MORB melts on a large scale, this process may be important in some MORB suites and should be accounted for in petrogenetic models. Another important implication is that the observed variability in melt inclusion compositions in primitive MORB phenocrysts need not always to reflect processes occurring in the mantle. In particular, inferences on fractional melting processes based on geochemistry of ultra-depleted melt inclusions may not always be valid.  相似文献   

12.
New experimental data on the solubility of lithium (Li) at spodumene (LiAlSi2O6) and petalite (LiAlSi4O10) saturation at 500 MPa and 550–750 °C reveal evidence for lithium supersaturation of pegmatite-forming melts before the formation of Li-aluminosilicates. The degree of Li enrichment in granitic melts can reach ~11,000 ppm above the saturation value before the crystallization of Li-aluminosilicate minerals at lower temperatures. Comparison of the experimental results with the spodumene-rich Moblan pegmatite (Quebec) is consistent with extreme Li enrichment of the pegmatite-forming melt prior to emplacement, which cannot be explained with equilibrium crystallization of Li-aluminosilicates from a common granitic melt. The results of this study support the model of disequilibrium fractional crystallization through liquidus undercooling as the most plausible mechanism for the generation of such Li-rich ore resources.  相似文献   

13.
Detailed melt and fluid inclusion studies in quartz hosts from the Variscan Ehrenfriedersdorf complex revealed that ongoing fractional crystallization of the highly evolved H2O-, B-, and F-rich granite magma produced a pegmatite melt, which started to separate into two immiscible phases at about 720°C, 100 MPa. With cooling and further chemical evolution, the immiscibilty field expanded. Two conjugate melts, a peraluminous one and a peralkaline one, coexisted down to temperatures of about 490°C. Additionally, high-salinity brine exsolved throughout the pegmatitic stage, along with low-density vapor. Towards lower temperatures, a hydrothermal system gradually developed. Boiling processes occurred between 450 and 400°C, increasing the salinities of hydrothermal fluids at this stage. Below, the late hydrothermal stage is dominated by low-salinity fluids. Using a combination of synchrotron radiation-induced X-ray fluorescence analysis and Raman spectroscopy, the concentration of trace elements (Mn, Fe, Zn, As, Sb, Rb, Cs, Sr, Zr, Nb, Ta, Ag, Sn, Ta, W, rare earth elements (REE), and Cu) was determined in 52 melt and 8 fluid inclusions that are representative of distinct stages from 720°C down to 380°C. Homogenization temperatures and water contents of both melt and fluid inclusions are used to estimate trapping temperatures, thus revealing the evolutionary stage during the process. Trace elements are partitioned in different proportions between the two pegmatite melts, high-salinity brines and exsolving vapors. Concentrations are strongly shifted by co ncomitant crystallization and precipitation of ore-forming minerals. For example, pegmatite melts at the initial stage (700°C) have about 1,600 ppm of Sn. Concentrations in both melts decrease towards lower temperatures due to the crystallization of cassiterite between 650 and 550°C. Tin is preferentially fractionated into the peralkaline melt by a factor of 2–3. While the last pegmatite melts are low in Sn (64 ppm at 500°C), early hydrothermal fluids become again enriched with about 800 ppm of Sn at the boiling stage. A sudden drop in late hydrothermal fluids (23 ppm of Sn at 370°C) results from precipitation of another cassiterite generation between 400 and 370°C. Zinc concentrations in peraluminous melts are low (some tens of parts per million) and are not correlated with temperature. In coexisting peralkaline melts and high-T brines, they are higher by a factor of 2–3. Zinc continuously increases in hydrothermal fluids (3,000 ppm at 400°C), where the precipitation of sphalerite starts. The main removal of Zn from the fluid system occurs at lower temperatures. Similarly, melt and fluid inclusion concentrations of many other trace elements directly reflect the crystallization and precipitation history of minerals at distinctive temperatures or temperature windows.  相似文献   

14.
H2O, CO2, and H2OCO2 inclusions were observed in quatz from deep-seated granitic intrusions belonging to the Precambrian Farsund plutonic complex, south Norway. These inclusions represent solidus and/or sub-solidus fluids that were present in these rocks at some period between the initial melt and the present. Early CO2 and H2OCO2 inclusions with about 20 mole% CO2 contain up to 10 mole% CH4 in the CO2 phase and have densities from 0.96 to 0.85 g/cc. These inclusions are considered to most nearly approximate solidus vapour phases and suggest conditions of final solidification of the magma at 5 to 6 Kb and 700°C to 800°C. The H2O inclusions have salinities between 2 and 60 wt%; the majority contain 5 to 20 equivalent wt.% NaCl and have densities from 1.05 to 0.85 g/cc. Microthermometry indicates that other cations such as K+, Ca2+ and / or Mg2+ are present in these aqueous fluids. The H2O inclusions primarily represent fluids present at a post-magmatic stage of fracturing and healing of these rocks during uplift.  相似文献   

15.
In this paper, we show that the crystallization of miarolitic pegmatites at K?nigshain started at about 700°C, in melts containing up to 30 mass% water. Such high water concentration at low pressures (1–3 kbar) is only possible if the melts are peralkaline. Such peralkaline melts are highly corrosive, and reacted with the wall rock—here the granite host—forming the graphic granite zone, in part via a magmatic–metasomatic reaction. With cooling, the water concentration in some melt fractions increased up to 50 mass% H2O. The melt-dominated system ends below 600°C and passes into a fluid-dominated system, the beginning of which is characterized by strong pressure fluctuations, caused by the change of OH and CO3 2− in the melt, to molecular water and CO2. We note two generations of smoky quartz, one crystallized above the β–α-transition of quartz (≈573°C), and one below, both of which contain melt inclusions. This indicates that some melt fraction remains during at least the higher-temperature portion of the growth of minerals into the miarolitic cavity, contradicting the view that minerals growing into a pegmatite chamber only do so from aqueous fluids. We show that the K?nigshain miarolitic pegmatites are part of the broad spectrum of pegmatite types, and the processes active at K?nigshain are representative of processes found in most granitic pegmatites, and are thus instructive in the understanding of pegmatite formation in general, and constraining the composition and characteristics of pegmatite-forming melts. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
New analytical and experimental data constrain the storage and equilibration conditions of the magmas erupted in 1912 from Novarupta in the 20th century's largest volcanic event. Phase relations at H2O+CO2 fluid saturation were determined for an andesite (58.7 wt% SiO2) and a dacite (67.7 wt%) from the compositional extremes of intermediate magmas erupted. The phase assemblages, matrix melt composition and modes of natural andesite were reproduced experimentally under H2O-saturated conditions (i.e., PH2O=PTOT) in a negatively sloping region in T-P space from 930 °C/100 MPa to 960 °C/75 MPa with fO2~NNO+1. The H2O-saturated equilibration conditions of the dacite are constrained to a T-P region from 850 °C/50 MPa to 880 °C/25 MPa. If H2O-saturated, these magmas equilibrated at (and above) the level where co-erupted rhyolite equilibrated (~100 MPa), suggesting that the andesite-dacite magma reservoir was displaced laterally rather than vertically from the rhyolite magma body. Natural mineral and melt compositions of intermediate magmas were also reproduced experimentally under saturation conditions with a mixed (H2O + CO2) fluid for the same range in PH2O. Thus, a storage model in which vertically stratified mafic to silicic intermediate magmas underlay H2O-saturated rhyolite is consistent with experimental findings only if the intermediates have XH2Ofl=0.7 and 0.9 for the extreme compositions, respectively. Disequilibrium features in natural pumice and scoria include pristine minerals existing outside their stability fields, and compositional zoning of titanomagnetite in contact with ilmenite. Variable rates of chemical equilibration which would eliminate these features constrain the apparent thermal excursion and re-distribution of minerals to the time scale of days.  相似文献   

17.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95-1.07 g/cm3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex.  相似文献   

18.
Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt   总被引:2,自引:0,他引:2  
Fluid/melt distribution coefficients for F have been determined in experiments conducted with peraluminous topaz rhyolite melts and fluids consisting of H2O and H2O+CO2 at pressures of 0.5 to 5 kbar, temperatures of 775°–1000°C, and concentrations of F in the melt ranging from 0.5 to 6.9 wt%. The major element, F, and Cl concentrations of the starting material and run product glasses were determined by electron microprobe, and the concentration of F in the fluid was calculated by mass balance. The H2O concentrations of some run product glasses were determined by ion microprobe (SIMS). The solubility of melt in the fluid phase increases with increasing F in the system; the solubility of H2O in the melt is independent of the F concentration of the system with up to 6.3 wt% F in the melt. No evidence of immiscible silica- and fluoriderich liquids was detected in the hydrous but water-undersaturated starting material glasses (8.5 wt% F in melt) or in the water-saturated run product glasses. F concentrates in topaz rhyolite melts relative to coexisting fluids at most conditions studied; however, DF (wt% F in fluid/wt% F in melt) increases strongly with increasing F in the system. Maximum values of DF in this study are significantly larger than those previously reported in the literature. Linear extrapolation of the data suggests that DF is greater than one for water-saturated, peraluminous granitic melts containing 8 wt% F at 800° C and 2 kbar. DF increases as temperature and as (H2O/H2O+CO2) of the fluid increase. For topaz rhyolite melts containing 1 wt% F and with H2O-rich fluids, DF is independent of changes in pressure from 2 to 5 kbar at 800° C; for melts containing 1 wt% F and in equilibrium with CO2-bearing fluids the concentrations of F in fluid increases with increasing pressure. F-and lithophile element-enriched granites may evolve to compositions containing extreme concentrations of F during the final stages of crystallization. If F in the melt exceeds 8 wt%, DF is greater than one and the associated magmatic-hydrothermal fluid contains >4 molal F. Such F-enriched fluids may be important in the mass transport of ore constituents, i.e., F, Mo, W, Sn, Li, Be, Rb, Cs, U, Th, Nb, Ta, and B, from the magma.  相似文献   

19.
We document compositions of minerals and melts from 3 GPa partialmelting experiments on two carbonate-bearing natural lherzolitebulk compositions (PERC: MixKLB-1 + 2·5 wt% CO2; PERC3:MixKLB-1 + 1 wt% CO2) and discuss the compositions of partialmelts in relation to the genesis of alkalic to highly alkalicocean island basalts (OIB). Near-solidus (PERC: 1075–1105°C;PERC3: 1050°C) carbonatitic partial melts with <10 wt%SiO2 and 40 wt% CO2 evolve continuously to carbonated silicatemelts with >25 wt% SiO2 and <25 wt% CO2 between 1325 and1350°C in the presence of residual olivine, orthopyroxene,clinopyroxene, and garnet. The first appearance of CO2-bearingsilicate melt at 3 GPa is 150°C cooler than the solidusof CO2-free peridotite. The compositions of carbonated silicatepartial melts between 1350 and 1600°C vary in the rangeof 28–46 wt% SiO2, 1·6–0·5 wt% TiO2,12–10 wt% FeO*, and 19–29 wt% MgO for PERC, and42–48 wt% SiO2, 1·9–0·5 wt% TiO2,10·5–8·4 wt% FeO*, and 15–26 wt% MgOfor PERC3. The CaO/Al2O3 weight ratio of silicate melts rangesfrom 2·7 to 1·1 for PERC and from 1·7 to1·0 for PERC3. The SiO2 contents of carbonated silicatemelts in equilibrium with residual peridotite diminish significantlywith increasing dissolved CO2 in the melt, whereas the CaO contentsincrease markedly. Equilibrium constants for Fe*–Mg exchangebetween carbonated silicate liquid and olivine span a rangesimilar to those for CO2-free liquids at 3 GPa, but diminishslightly with increasing dissolved CO2 in the melt. The carbonatedsilicate partial melts of PERC3 at <20% melting and partialmelts of PERC at 15–33% melting have SiO2 and Al2O3 contents,and CaO/Al2O3 values, similar to those of melilititic to basaniticalkali OIB, but compared with the natural lavas they are moreenriched in CaO and they lack the strong enrichments in TiO2characteristic of highly alkalic OIB. If a primitive mantlesource is assumed, the TiO2 contents of alkalic OIB, combinedwith bulk peridotite/melt partition coefficients of TiO2 determinedin this study and in volatile-free studies of peridotite partialmelting, can be used to estimate that melilitites, nephelinites,and basanites from oceanic islands are produced from 0–6%partial melting. The SiO2 and CaO contents of such small-degreepartial melts of peridotite with small amounts of total CO2can be estimated from the SiO2–CO2 and CaO–CO2 correlationsobserved in our higher-degree partial melting experiments. Thesesuggest that many compositional features of highly alkalic OIBmay be produced by 1–5% partial melting of a fertile peridotitesource with 0·1–0·25 wt% CO2. Owing to verydeep solidi of carbonated mantle lithologies, generation ofcarbonated silicate melts in OIB source regions probably happensby reaction between peridotite and/or eclogite and migratingcarbonatitic melts produced at greater depths. KEY WORDS: alkali basalts; carbonated peridotite; experimental petrology; ocean island basalts; partial melting  相似文献   

20.
Experiments at 750 °C, 200 MPa(H2O), a (H2O)=1, and fO2∼Ni-NiO established that the equilibrium among tourmaline, biotite, cordierite, and melt (± spinel, aluminosilicate, or corundum) occurs with ∼2 wt% B2O3 in strongly peraluminous melt with an aluminosity, measured by the parameter ASI, of >1.2. The experiments demonstrate the relationship of tourmaline stability to the activity product of the tourmaline components boron and aluminum, which are inversely related to one another. Tourmaline is unstable in metaluminous to mildly peraluminous melts (ASI <1.2) at 750 °C regardless of their boron content. For a given aluminosity, addition of components such as F requires a greater boron content of melt at this equilibrium. The stability of tourmaline increases with decreasing temperatures below 750 °C. At the inception of melting, tourmaline breaks down incongruently to assemblages containing crystalline AFM silicates (biotite, cordierite, garnet, sillimanite), aluminates (spinel, corundum), and B-enriched but Fe-Mg-poor melt. Granitic melts are likely to be undersaturated in tourmaline from the start of their crystallization, and their initial boron contents will be limited by the abundance of tourmaline in their source rocks. Quartzofeldspathic (gneissic, metapelitic) rocks that reached conditions of the granulite facies and still contain (prograde) tourmaline are rare, and probably have never yielded a partial melt. Most leucogranitic magmas will initially crystallize biotite, cordierite, or garnet, but not tourmaline. With crystallization, the Fe-Mg content of melt decreases, and the B2O3 content increases until the tourmaline-biotite and/or tourmaline-cordierite (or garnet) equilibria are attained. The B2O3 content of melt is buffered as long as these equilibria continue to operate, but low initial Fe-Mg contents of the magmas limit the quantity of boron that can be consumed by these reactions to <1 wt% B2O3. Normally, leucogranitic magmas contain insufficient Fe and Mg to conserve all boron as tourmaline and thus lose a large fraction of magmatic boron to wallrocks. Leucogranites and pegmatites with tourmaline as an early and only AFM silicate mineral probably contained >2 wt% B2O3 in their bulk magmas. Received: 6 August 1996 / Accepted: 21 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号