首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Daily precipitation amounts from the meteorological station at Kaédi (Mauritania) are available since 1904, the country's longest record. The series constitutes an excellent tool for studying variations in the precipitation climate. Analysis of the annual precipitation amounts reveals the existence of a statistically highly significant downward trend which started in the sixties and is still continuing at present.It was further found that the entire reference period 1904–1988 needs, for reasons of data stationarity, to be split into two parts, corresponding respectively to the periods 1904–1967 and 1968–1988, the year 1967 being estimated as the change-point. The latter period corresponds to the drought which has prevailed over the Sahel region since 1968. The jump disclosed in the hydroclimatic system is indicative of the existence of multiple stable climate regimes.With 7 Figures  相似文献   

2.
A new core, GPXX, from La Grande Pile (Vosges, France) has enabled a more precise evaluation of pollen data concerning the last climatic cycle at this site and has enabled reconstruction of the monthly temperature and precipitation. This paper shows that the various components of the reconstructed climatic signal are clearly separated and that they are coherent with the vegetation dynamics. The Eemian interglacial was influenced first by an oceanic climate and second by a more continental one. The two interstadials, St-Germain I and II, were mainly continental. These three temperate periods ended with a cool and humid transition period dominated by boreal forests, which may have been favourable to ice accretion. The Dansgaard-Oeschger oscillations from 55 to 25 Kyr BP are not significantly recorded in La Grande Pile.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

3.
Holocene climatic changes over northwest India: An appraisal   总被引:1,自引:0,他引:1  
Multidisciplinary studies of the climatic conditions of the present-day arid regions of the northwest Indian region indicate phases of distinct change during the recent post-glacial period. In view of the topical importance of the subject, and the sources of information being scattered throughout multidiscipli-nary research journals, an attempt has been made to summarize and present a coherent picture of the climate of the present-day desert regions of northwest India for the Holocene period. The present-day climatology and physiography of the region is presented as introductory material. The important studies which throw some light on the glacial arid phase, the wet phase, coinciding with the Harappan civilization, and the present-day arid phase are reviewed.  相似文献   

4.
5.
The use of rogation ceremonies due to environmental causes constitutes an important source of information in paleoclimatic reconstructions. Their specific characteristics and full documental records permit highly reliable series to be reconstructed with daily, monthly, seasonal or annual resolution over periods of several centuries (3–4 centuries in the case of Catalonia). The levels of intensity, reflected in the type of religious ceremony enacted, allows quantification. Comparative analysis is made possible by the similarity of the mechanisms developed in different localities. The use of these series in paleoclimatological studies is a promising line of research, particularly as regards the pro pluvia rogations celebrated in the Mediterranean countries and in South America.  相似文献   

6.
In order to improve the reliability of climate reconstruction, especially the climatologies outside the modern observed climate space, an improved inverse vegetation model using a recent version of BIOME4 has been designed to quantitatively reconstruct past climates, based on pollen biome scores from the BIOME6000 project. The method has been validated with surface pollen spectra from Eurasia and Africa, and applied to palaeoclimate reconstruction. At 6 cal ka BP (calendar years), the climate was generally wetter than today in southern Europe and northern Africa, especially in the summer. Winter temperatures were higher (1–5°C) than present in southern Scandinavia, northeastern Europe, and southern Africa, but cooler in southern Eurasia and in tropical Africa, especially in Mediterranean regions. Summer temperatures were generally higher than today in most of Eurasia and Africa, with a significant warming from ∼3 to 5°C over northwestern and southern Europe, southern Africa, and eastern Africa. In contrast, summers were 1–3°C cooler than present in the Mediterranean lowlands and in a band from the eastern Black Sea to Siberia. At 21 cal ka BP, a marked hydrological change can be seen in the tropical zone, where annual precipitation was ∼200–1,000 mm/year lower than today in equatorial East Africa compared to the present. A robust inverse relationship is shown between precipitation change and elevation in Africa. This relationship indicates that precipitation likely had an important role in controlling equilibrium-line altitudes (ELA) changes in the tropics during the LGM period. In Eurasia, hydrological decreases follow a longitudinal gradient from Europe to Siberia. Winter temperatures were ∼10–17°C lower than today in Eurasia with a more significant decrease in northern regions. In Africa, winter temperature was ∼10–15°C lower than present in the south, while it was only reduced by ∼0–3°C in the tropical zone. Comparison of palaeoclimate reconstructions using LGM and modern CO2 concentrations reveals that the effect of CO2 on pollen-based LGM reconstructions differs by vegetation type. Reconstructions for pollen sites in steppic vegetation in Europe show warmer winter temperatures under LGM CO2 concentrations than under modern concentrations, and reconstructions for sites in xerophytic woods/scrub in tropical high altitude regions of Africa are wetter for LGM CO2 concentrations than for modern concentrations, because our reconstructions account for decreased plant water use efficiency.  相似文献   

7.
Based on the physical background that varying solar activity should lead to variations of the ‘solar constant’ and that the climate system may respond sensitively even to small solar variations, a correlation analysis is performed where hemispheric and global averages of the annual mean surface air temperature are compared with the variations of a variety of solar forcing parameters: sunspots, related hypotheses including variations of the quasi-eleven-year solar cycle length, solar diameter variations and gravitational effects. This analysis is based on the 1881–1988 period, for the northern hemisphere including proxy data 1671–1988. Cross correlations and correlations moving in time reveal some instability effects which are hard to interpret. The temperature variance components which may be hypothetically explained by solar forcing are small. Similarly, a seasonal and regional signal and signal-to-noise analysis based on a gridded temperature time series 1890–1985 reveals small signals which do not exceed roughly 1.5 K in the arctic winter (maximum) or 0.2-0.3 K on a global average.  相似文献   

8.
A significant change in mean precipitation occurred over much of Australia between 1913–45 and 1946–78. This is described on a seasonal basis and related to possible changes in the atmospheric circulation. It now appears that during this time mean surface temperatures in the mid southern latitude zone increased by up to 1 °C. This temperature change could be at least partly due to an increase in atmospheric CO2 concentrations from about 260 ppmv in the early nineteenth century. In any case the observed temperature increase is similar to the predicted future effects of a 50% increase in atmospheric CO2 concentrations. Thus the climatic change which occurred earlier this century is at least a good analogy for the effects of a CO2-induced global warming which is expected to occur over a similar time interval in the future. This allows the construction of more detailed and quantitative climate scenarios. The most noteworthy conclusion is that marked changes in the seasonally of precipitation should be anticipated, with seasonal changes in some areas being of the order of 50% or more for a doubling of CO2 content. The results are in general consistent with earlier more qualitative scenarios for Australia.  相似文献   

9.
近50年阜新地区气候变化特征分析   总被引:4,自引:0,他引:4  
根据1951—2000年阜新地区气温和降水资料,运用一元回归、相关分析等数理统计方法,对近50 a阜新地区气候变化进行了分析。分析表明:近50 a阜新地区年平均气温呈上升趋势,增温率为0.24℃/10 a,近30 a增温尤其明显。不同季节平均气温的变化趋势与年平均气温变化趋势基本一致,仅冬季平均气温有差异。根据近50 a冷暖波动情况,可将阜新地区划分成2个冷期和2个暖期。近50 a阜新地区年降水量呈下降趋势,递减率为8.009 mm/10 a,但是近30 a降水量呈上升趋势。各季节中夏、秋、冬季降水量呈上升趋势,但春季降水呈下降趋势。近50 a阜新地区降水变化可分为3个多雨期和3个少雨期。  相似文献   

10.
11.
Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. However, some of the recent policy literature has focused on dangerous climatic change (DCC) rather than on DAI. DAI is a set of increases in GHGs concentrations that has a non-negligible possibility of provoking changes in climate that in turn have a non-negligible possibility of causing unacceptable harm, including harm to one or more of ecosystems, food production systems, and sustainable socio-economic systems, whereas DCC is a change of climate that has actually occurred or is assumed to occur and that has a non-negligible possibility of causing unacceptable harm. If the goal of climate policy is to prevent DAI, then the determination of allowable GHG concentrations requires three inputs: the probability distribution function (pdf) for climate sensitivity, the pdf for the temperature change at which significant harm occurs, and the allowed probability (“risk”) of incurring harm previously deemed to be unacceptable. If the goal of climate policy is to prevent DCC, then one must know what the correct climate sensitivity is (along with the harm pdf and risk tolerance) in order to determine allowable GHG concentrations. DAI from elevated atmospheric CO2 also arises through its impact on ocean chemistry as the ocean absorbs CO2. The primary chemical impact is a reduction in the degree of supersaturation of ocean water with respect to calcium carbonate, the structural building material for coral and for calcareous phytoplankton at the base of the marine food chain. Here, the probability of significant harm (in particular, impacts violating the subsidiary conditions in Article 2 of the UNFCCC) is computed as a function of the ratio of total GHG radiative forcing to the radiative forcing for a CO2 doubling, using two alternative pdfs for climate sensitivity and three alternative pdfs for the harm temperature threshold. The allowable radiative forcing ratio depends on the probability of significant harm that is tolerated, and can be translated into allowable CO2 concentrations given some assumption concerning the future change in total non-CO2 GHG radiative forcing. If future non-CO2 GHG forcing is reduced to half of the present non-CO2 GHG forcing, then the allowable CO2 concentration is 290–430 ppmv for a 10% risk tolerance (depending on the chosen pdfs) and 300–500 ppmv for a 25% risk tolerance (assuming a pre-industrial CO2 concentration of 280 ppmv). For future non-CO2 GHG forcing frozen at the present value, and for a 10% risk threshold, the allowable CO2 concentration is 257–384 ppmv. The implications of these results are that (1) emissions of GHGs need to be reduced as quickly as possible, not in order to comply with the UNFCCC, but in order to minimize the extent and duration of non-compliance; (2) we do not have the luxury of trading off reductions in emissions of non-CO2 GHGs against smaller reductions in CO2 emissions, and (3) preparations should begin soon for the creation of negative CO2 emissions through the sequestration of biomass carbon.  相似文献   

12.
Methods are proposed to estimate the monthly relative humidity and wet bulb temperature based on observations from a dynamical downscaling coupled general circulation model with a regional climate model (RCM) for a quantitative assessment of climate change impacts. The water vapor pressure estimation model developed was a regression model with a monthly saturated water vapor pressure that used minimum air temperature as a variable. The monthly minimum air temperature correction model for RCM bias was developed by stepwise multiple regression analysis using the difference in monthly minimum air temperatures between observations and RCM output as a dependent variable and geographic factors as independent variables. The wet bulb temperature was estimated using the estimated water vapor pressure, air temperature, and atmospheric pressure at ground level both corrected for RCM bias. Root mean square errors of the data decreased considerably in August.  相似文献   

13.
14.
While climate modeling gives substantial information about the future climate, there are still many uncertainties. This review addresses the question of the response of the climate system to forcing by increasing atmospheric trace gases. The uncertainties of greatest concern are: the transient adjustment controlled by ocean heat uptake; the cover of snow and ice in high latitudes; the change in cloud radiative properties; and shifts in regional patterns connected to the ocean and land surfaces and to the internal dynamics of the atmosphere.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
Biome models allow the results of experiments with atmospheric general circulation models to be translated into global maps of potential natural vegetation. The use of biome models as a diagnostic tool for palaeoclimate simulations can yield maps that are directly comparable with palaeoecological (pollen and plant macrofossil) records provided these records are biomized, i.e. assigned to biomes in a consistent way. This article describes a method for the objective biomization of pollen samples based on fuzzy logic. Pollen types (taxa) are assigned to one or more plant functional types (PFTs), then affinity scores are calculated for each biome in turn based on its list of characteristic PFTs. The pollen sample is assigned to the biome to which it has the highest affinity, subject to a tie-breaking rule. Modern pollen data from surface samples, reflecting present vegetation across Europe, are used to validate the method. Pollen data from dated sediment cores are then used to reconstruct European vegetation patterns for 6 ka. The reconstruction shows systematic differences from present that are consistent with previous interpretations. The method has proved robust with respect to human impacts on vegetation, and provides a rational way to interpret combinations of pollen types that do not have present-day analogs. The method demands minimal prior information and is therefore equally suitable for use in other regions with richer floras, and/or lower densities of available modern and fossil pollen samples, than Europe.  相似文献   

16.
Most, if not all forests in the Caribbean are subject to occasional disturbances from hurricanes. If current general circulation model (GCM) predictions are correct, with doubled atmospheric CO2 (2 × CO2), the tropical Atlantic will be between 1 °C and 4 °C warmer than it is today. With such a warming, more than twice as many hurricanes per year could be expected in the Caribbean. Furthermore, Emanuael (1987) indicates that in a warmed world the destructive potential of Atlantic hurricanes could be increased by 40% to 60%. While speculative, these increases would dramatically change the disturbance regimes affecting tropical forests in the region and might alter forest structure and composition. Global warming impacts through increased hurricane damage on Caribbean forests are presented.An individual tree, gap dynamics forest ecosystem model was used to simulate the range of possible hurricane disturbance regimes which could affect the Luquillo Experimental Forest in Puerto Rico. Model storm frequency ranged from no storms at all up to one storm per year; model storm intensity varied from no damage up to 100% mortality of trees. The model does not consider the effects of changing temperature and rainfall patterns on the forest. Simulation results indicate that with the different hurricane regimes a range of forest types are possible, ranging from mature forest with large trees, to an area in which forest trees are never allowed to reach maturity.  相似文献   

17.
Data from temperature measurements in boreholes are indicators of the temperature variations associated with past climate change. This paper is a contribution to reconstruct the ground surface temperature history (GSTH) from geothermal data in the eastern part of Morocco. From a set of several temperature logs, measured in the study area, only two were found suitable for estimating the ground surface temperature history (GSTH). In order to reconstruct the surface temperature past changes the functional space inversion method (FSI) was used. The inversion reveals a recent warming in the last century with respective amplitude of 0.1 °C and 1 °C for the boreholes 2952 in Oujda and 1624 in Berkane. These results can be confirmed by the air temperature record of the meteorical station in Oujda despite the scarceness of data beyond 1959.  相似文献   

18.
The forest model ForClim was used to evaluate the applicability of gap models in complex topography when the climatic input data is provided by a global database of 0.5° resolution. The analysis was based on 12 grid cells along an altitudinal gradient in the European Alps. Forest dynamics were studied both under current climate as well as under four prescribed 2 × CO2 scenarios of climatic change obtained from General Circulation Models, which allowed to assess the sensitivity of mountainous forests to climatic change.Under current climate, ForClim produces plausible patterns of species composition in space and time, although the results for single grid cells sometimes are not representative of reality due to the limited precision of the climatic input data.Under the scenarios of climatic change, three responses of the vegetation are observed, i.e., afforestation, gradual changes of the species composition, and dieback of today's forest. In some cases widely differing species compositions are obtained depending on the climate scenario used, suggesting that mountainous forests are quite sensitive to climatic change. Some of the new forests have analogs on the modern landscape, but in other cases non-analog communities are formed, pointing at the importance of the individualistic response of species to climate.The applicability of gap models on a regular grid in a complex topography is discussed. It is concluded that for their application on a continental scale, it would be desirable to replace the species in the models by plant functional types. It is suggested that simulation studies like the present one must not be interpreted as predictions of the future fate of forests, but as means to assess their sensitivity to climatic change.  相似文献   

19.
Effective policies for dealing with anticipated climatic changes must reflect the two-way interactions between climate, forests and society. Considerable analysis has focused on one aspect of forests - timber production - at a local and regional scale, but no fully integrated global studies have been conducted. The appropriate ecological and economic models appear to be available to do so. Nontimber aspects of forests dominate the social values provided by many forests, especially remote or unmanaged lands where the impacts of climatic change are apt to be most significant. Policy questions related to these issues and lands are much less well understood. Policy options related to afforestation are well studied, but other ways the forest sector can help ameliorate climatic change merit more extensive analysis. Promising possibilities include carbon taxes to influence the management of extant forests, and materials policies to lengthen the life of wood products or to encourage the substitution of CO2-fixing wood products for ones manufactured from less benign materials.  相似文献   

20.
In the interpretation of the Antarctic deep ice-core data, little attention has been given to the Holocene part of the records. As far as translation of the stable isotope content in terms of temperature is concerned, this can be understood because expected temperature changes may be obscured by isotopic noise of various origins and because no 14C dating has yet been available for this type of sequence. In this article, we focus on the Dome C and Vostok cores and on a new 850-m long ice core drilled out at Komsomolskaïa by the Soviet Antarctic Expeditions. These three sites are located in East Antarctica, on the Antarctic plateau, in a region essentially undisturbed by ice-flow conditions, so that their detailed intercomparison may allow us to identify the climatically significant isotopic signal. Our results compare well with the proximal records of Southern Hemisphere high latitudes and support the existence of a warmer climatic optimum between 10 and 6 ka y BP. Maximum temperatures are reached just at the end of the last deglaciation, which confirms previous observations at high latitudes, in contrast with later dates for the Atlantic and hypsithermal optima in Europe and North America.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号