首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution of the classical problem of two-dimensional magnetohydrodynamic (MHD) interaction between two shocks (the angle between the interacting shocks and the slope of the magnetic field are arbitrary) obtained by Pushkar' (1995) is applied to the problem of interaction between interplanetary shocks and the solar wind termination shock (TS). The self-consistent kinetic-gasdynamic model of solar wind interaction with the supersonic flow of a three-component (electrons, protons, and hydrogen atoms) interstellar medium developed for the axisymmetric, steady-state case by Baranov and Malama (1993) is used as the stationary background against which the physical phenomenon under consideration takes place. The main physical process in this model is the resonant charge exchange between protons and hydrogen atoms. This paper is a natural continuation of our previous papers (Baranov et al. 1996a, 1996b). However, whereas attention in these papers was focused on the TS interaction with an interplanetary forward shock moving away from the Sun, here we consider the TS interaction with an interplanetary reverse shock (RS) moving toward the Sun with a velocity lower than the solar-wind velocity. We show that the TS-RS interaction can give rise to a new TS' that moves toward the Sun, i.e., toward Voyager 1 and Voyager 2. This phenomenon may be responsible for the unexpected suggestion made by some of the scientists that Voyager 1 already crossed TS in the past year. This conclusion was drawn from the interpretation of the intensity, energy spectra, and angular distributions of ions in the energy range from 10 keV to 40 MeV measured from this spacecraft. Our results show that Voyager 1 could cross TS' rather than TS.  相似文献   

2.
We propose in this paper an interacting holographic dark energy (IHDE) model in chameleon–tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the scalar field coupling matter Lagrangian in the model rather than being inserted into the formalism as an external source for the interaction. The correspondence between the tachyon field and the holographic dark energy (HDE) densities allows to reconstruct the tachyon scalar field and its potential in a flat FRW universe. The model can show the accelerated expansion of the universe and satisfies the observational data.  相似文献   

3.
The mutual influence between two whistler mode waves, through cyclotron resonant interaction of each wave with the same set of energetic electrons, is analysed both theoretically and by computer simulations ; this two-wave interaction mechanism seems to be an important process in understanding recently observed phenomena in Siple Station VLF multi-wave injection experiments. A criterion is established to estimate the threshold for the critical frequency spacing (for given wave amplitudes) for a significant mutual interaction between two monochromatic waves to occur. This criterion is based on the overlap of coherence bandwidths associated with the trapping domains of each wave and it takes into account the geomagnetospheric medium inhomogeneity. The effects of a perturbing second wave on electrons trapped by a first wave is discussed, considering the general situation of varying-frequency waves, and a simulation model is used to track the motion of test-electrons in the two-waves field. Conditions leading to detrapping and subsequent trapping by the second wave of previously first-wave trapped electrons are analysed and suggest the possibility of this phenomenon to play an important role in frequency entrainment and energy exchange between two waves.  相似文献   

4.
The subject of interaction between the Corona Mass Ejections (CMEs) is important in the concept of space-weather studies. In this paper, we analyzed a set of 15 interacting events taken from the list compiled by Manoharan et al. (in J. Geophys. Res. 109:A06109, 2004) and their associated DH type II radio bursts. The pre and primary CMEs, and their associated DH type II bursts are identified using the SOHO/LASCO catalog and Wind/WAVES catalog, respectively. All the primary CMEs are associated with shocks and interplanetary CMEs. These CMEs are found to be preceded by secondary slow CMEs. Most of primary CMEs are halo type CME and much faster (Mean speed = 1205 km?s?1) than the pre CME (Mean speed = 450 km?s?1). The average delay between the pre and primary CMEs, drift rate of DH type IIs and interaction height are found to be 211 min, 0.878 kHz/s and 17.87 Ro, respectively. The final observed distance (FOD) of all pre CMEs are found to be less than 15 Ro and it is seen that many of the pre CMEs got merged with the primary CMEs, and, they were not traced as separate CMEs in the LASCO field of view. Some radio signatures are identified for these events in the DH spectrum around the time of interaction. The interaction height obtained from the height-time plots of pre and primary CMEs is found to have correlations with (i) the time delay between the two CMEs and (ii) the central frequency of emission in the radio signatures in the DH spectrum around the time of interaction. The centre frequency of emission in the DH spectrum around the time of interaction seems to decrease when the interaction height increases. This result is compared with an interplanetary density model of Saito et al. (in Solar Phys. 55:121, 1977).  相似文献   

5.
I show in this paper that two types of magnetic torques can appear in the interaction between an accretion disc and a magnetic accretor. There is the well-known torque resulting from the difference in angular velocity between the accretion disc and the star, but in addition there is a torque coming from the interaction between the stellar magnetic field and the disc's own magnetic field. The latter form of magnetic torque decreases in strength more slowly with increasing radius, and will therefore dominate at large radii. The direction of the disc field is not determined by the difference in angular velocity between the star and the disc as in the Ghosh &38; Lamb model, but rather is a free parameter. The magnetic torque may therefore either spin up or spin down the star, and the torque changes sign if the magnetic field in the disc reverses. I suggest that this mechanism can explain the torque reversals that have been observed in some disc-fed X-ray pulsars.  相似文献   

6.
In our tetrad-formulation of the gravitation theory a potential-like interaction between the gravitationpotential and the matter-tensor is postulated. In the case of a dust-like matter from this interaction results a screening of the quasi-NEWTON ian potential by the matter-density given by a SEELIGER -YUKAWA -potential with the absorptionconstant approximately. — In the cosmological case from this screening of gravitation a finite effective gravitationradius R of the universe is resulting which radius R is given by the condition for an EINSTEIN -universe 4.  相似文献   

7.
The estimations of integral masses of double galaxies are obtained taking as a basis recent observational data on 150 pairs of galaxies with measured radial velocities for both components. It is shown that the mean orbital mass-to-luminosity ratio essentially depends on a morphological type of double galaxies and on a kind of interaction between pair components. Minimal values of mass-to-luminosity ratio take place for double galaxies having linear features of interaction, namely: bridges, tails; as well for pairs with compact and Markarian components, too. The empirical relation between mass-to-luminosity ratio and linear separation of pair components do not indicate on an existence of a hidden stellar coronae around double galaxies.  相似文献   

8.
The interaction between a shock-wave and the magnetopause is formulated on the basis of one-dimensional magnetohydrodynamics. The magnetopause is assumed to be a tangential discontinuity, and the magnetic field is limited to the case of perpendicularity. Both the forward and reverse shocks' impact on the magnetopause are considered and analyzed separately. The forward shock-magnetopause interaction results in a transmitted shock, a tangential discontinuity, and a simple rarefaction wave. The reverse shock-magnetopause interaction creates a transmitted shock, a tangential discontinuity, and a reflected wave. The propagation of an SSC signal which is related to an interplanetary shock-induced geomagnetic storm's onset-time on Earth is discussed in general terms. It was found in earlier work (Shen and Dryer, 1972) that the propagation velocity of an inter-planetary shock is decreased by about 1015% following its impact with the earth's bow shock; the present study shows that its velocity is then suddenly increased by a factor of two to three after impact with the magnetopause. The fast propagating shock-wave inside the magnetosphere degenerates into a hydromagnetic wave as it advances into an increasing intensity of the distorted dipole geomagnetic field.  相似文献   

9.
Quasi-linear theory, describing the diffusion of electrons in velocity space due to resonant interaction with Langmuir waves, is generalized to treat the case where the waves are distributed inhomogeneously (in clumps). The method used is a generalization of an approach developed by Morales and Lee (1974) to treat the interaction of electrons with a distribution of solitons. It is shown that quasi-linear theory, specifically the diffusion of electrons in velocity space due to resonant interaction with Langmuir waves, applies irrespective of how the waves are distributed in space, provided that an electron has multiple encounters with clumps of Langmuir waves, and that the evolution of the distribution of electrons is considered only on a time-scale long compared with the time between such encounters. This generalization of quasi-linear theory is of relevance to type III solar radio bursts, where the Langmuir waves are known to be distributed inhomogeneously, and yet the electron distribution is consistent with that expected from a balance between ballistic effects and quasi-linear relaxation.  相似文献   

10.
The interaction between Ricci scalar curvature and the baryon number current, dynamically breaks CPT in an expanding universe and leads to baryon asymmetry. Using this kind of interaction and study the gravitational baryogenesis in the Bianchi type I universe. We find out the effect of anisotropy of the universe on the baryon asymmetry for the case which the equation of state parameter, ω, varies with time.  相似文献   

11.
The interaction between VLF waves propagating at an angle to the geomagnetic field and an electron beam in the presence of cold plasma is discussed. It is shown that the Cerenkov signal is amplified during the process of resonance interaction by three orders of magnitude. The variation of the amplification factor with frequency is studied and its application to the explanation of the observed VLF intensities is indicated.  相似文献   

12.
Zhang  Jun  Wang  Jingxiu  Lee  Chik-Yin  Wang  Haimin 《Solar physics》2000,192(1-2):415-426
Using high-resolution observations of deep magnetograms and H filtergrams obtained at Big Bear Solar Observatory during 17–24 October 1997, we have studied the interaction of intranetwork and network elements. The relationship between small-scale magnetic fields and active phenomena is investigated. Most of the small-scale active phenomena are triggered by the interaction either between intranetwork and network magnetic elements or among several network elements. The energy released due to the interaction of intranetwork–network elements and network–network elements is large enough to heat the corona.  相似文献   

13.
It has been suggested that a contact system almost certainly cannot exist in static equilibrium undergoing periodic thermal relaxation oscillation. The energy transfer in a common convective envelope (CCE) makes the secondary have a complex structure, so the interaction between the secondary and CCE may play an important role in the structure and evolution of the contact system. The present paper tests the TRO theory and investigates this interaction with polytropic stellar model from the observational datum of 22 contact systems directly. It shows that the A-type systems are expanding with a velocity of 25.04 m yr–1, and the W-type systems are contracting at velocity of 3.10 m yr–1 by the calculations about these contact systems. Also, we calculate the ratio of energy transfer and the interaction coefficient for them. The HS (hot secondary) model is supported by our calculations. These results may help to understand the TRO theory and the W-phenomenon.  相似文献   

14.
Planetesimals orbiting a protostar in a circumstellar disk are affected by gravitational interaction among themselves and by gas drag force due to disk gas. Within the Kyoto model of planetesimal accretion, the migration rate is interpreted as the inverse of the planetary formation time scale. Here, we study time scales of gravitational interaction and gas drag force and their influence on planetesimal migration in detail. Evaluating observations of 86 T Tauri stars (Beckwithet al., 1990), we find the mean radial temperature profile of circumstellar disks. The disk mass is taken to be 0.01M in accordance with minimum mass models and observed T Tauri disks. The time scale of gravitational interaction between planetesimals is studied analogously to Chandrasekhar's stellar dynamics. Hence, Chandrasekhar's coefficient , defined as the fraction between the mean separation of planetesimals and the impact parameter, plays an important role in determining the migration rate. We find ln to lie between 5 and 10 within the protosolar disk. Our result is that, at the stage of disk evolution considered here, gas drag force affects the radial migration of planetesimals by a few orders of magnitude more than gravitational interaction.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

15.
Strange stars are compact objects similar to neutron stars composed of strange matter. This paper investigates the observational effects of the strong interaction between quarks. We believe: 1) that the conversion of a neutron star to a strange star is a large “period glitch” which is determined by the strong interaction; 2) that the strong interaction results in effective damping of oscillation of hot strange stars, which could be a new mechanism of driving supernova explosions; 3) that the strong interaction increases the difference in rotation between strange and neutron stars under high temperatures, making the minimum period for strange stars lower than that for neutron stars.  相似文献   

16.
In this letter we considered an interaction between Ricci dark energy and tachyonic field. We investigated the equation of state parameters in presence of the interaction and revealed a quintessence like behavior. Also, we investigated the validity of the generalized second law of thermodynamics in presence of this interaction and observed that it is broken down under this interaction.  相似文献   

17.
In this work, we have considered variable G in flat FRW universe filled with the mixture of dark energy, dark matter and radiation. If there is no interaction between the three fluids, the deceleration parameter and statefinder parameters have been calculated in terms of dimensionless density parameters which can be fixed by observational data. Also the interaction between three fluids has been analyzed due to constant G. The statefinder parameters also calculated in two cases: pressure is constant and pressure is variable.  相似文献   

18.
The quartet of galaxies NGC 7769, 7770, 7771 and 7771A is a system of interacting galaxies. Close interaction between galaxies caused characteristic morphological features: tidal arms and bars, as well as an induced star formation. In this study, we performed the Fabry–Perot scanning interferometry of the system in H a line and studied the velocity fields of the galaxies. We found that the rotation curve of NGC 7769 is weakly distorted. The rotation curve of NGC 7771 is strongly distorted with the tidal arms caused by direct flyby of NGC 7769 and flyby of a smaller neighbor NGC 7770. The rotation curve of NGC 7770 is significantly skewed because of the interaction with the much massive NGC 7771. The rotation curves and morphological disturbances suggest that the NGC 7769 and NGC 7771 have passed the first pericenter stage, however, probably the second encounter has not happened yet. Profiles of surface brightness of NGC 7769 have a characteristic break, and profiles of color indices have a minimum at a radius of intensive star formation induced by the interaction with NGC 7771.  相似文献   

19.
The interaction of supernova shocks and interstellar clouds is an important astrophysical phenomenon since it can result in stellar and planetary formation. Our experiments attempt to simulate this mass-loading as it occurs when a shock passes through interstellar clouds. We drive a strong shock using the Omega laser (∼5kJ)into a foam-filled cylinder with an embedded Al sphere(diameterD=120 μm) simulating an interstellar cloud. The density ratio between Al and foamis∼9. We have previously reported on the interaction between shock and cloud, the ensuing Kelvin-Helmholtz and Widnall instabilities, and the rapid stripping of all mass from the cloud. We now present a theory that explains the rapid mass-stripping. The theory combines (1) the integral momentum equations for a viscous boundary layer, (2) the equations for a potential flow past a sphere, (3) Spalding's law of the wall for turbulent boundary layers, and (4) the skin friction coefficient for a turbulent boundary layer on a flat plate. The theory gives as its final result the mass stripped from a sphere in a turbulent high Reynolds number flow, and it agrees very well with our experimental observations.  相似文献   

20.
We address current theories of research on morphology, environment and evolution of active galaxies in the form of a detailed case study of the nearby QSO host I Zw 1. This study is based on sub-kpc resolution 12CO(1-0) observations with the BIMA mm-interferometer and on near-infrared imaging with ISAAC at the VLT. The 12CO(1-0) maps reveal a circumnuclear molecular gas ring with a radius of 0.9 kpc. The imaging data in the J-band are analyzed with respect to a disk-bulge decomposition. Together with a model of the gas rotation curve, the radial profile of the dynamical J-band mass-to-light ratio (M/L) is discussed. The J-band images give new evidence for an interaction between I Zw 1 and its nearby companion. First results from a sequence of N-body simulations for an extensive test of the parameter space of the interaction are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号