首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
城市街道峡谷对称性对内部气流场的影响研究   总被引:4,自引:1,他引:3       下载免费PDF全文
应用雷诺应力湍流模型,模拟了不同高度比的城市街道峡谷的气流场。结果表明:峡谷的对称性对其内部气流场有显著影响。前高后低型峡谷下部为逆时针旋涡,上部为顺时针旋涡,峡谷越深,流场发展的越充分;峡谷内部墙面存在明显的驻点。前低后高型峡谷只存在一个大的顺时针旋涡,随着峡谷的加深,内部气流速率有减小的趋势;峡谷达到一定深度后出现驻点。对称型峡谷内部形成了顺时针旋涡,强度不大;随着峡谷的加深,内部流场转为一顺一反2个旋涡的二元结构;仅当峡谷很深时才出现明显驻点。前低后高型峡谷的气流场形式更有利于污染物的迁移、扩散,在城市规划中应尽量结合主导风向设计这类建筑布局。  相似文献   

2.
城市街道峡谷汽车尾气污染的数值模拟   总被引:4,自引:3,他引:4  
李磊  张镭  胡非 《高原气象》2004,23(1):97-102
建立了一个简单的三维街道峡谷空气污染模式,并用实测资料进行了验证。利用建立的模式设计了7种试验方案,对街道峡谷内的污染状况进行了模拟。以CO为模拟对象的数值试验结果表明,街道峡谷上空的风速风向条件是决定街道峡谷内的污染状况的重要因素。峡谷上空风向与街道轴线的夹角越大、风速越小,则街道地面CO浓度越高。以现有的兰州典型车流量和排放因子,兰州街道地面CO浓度容易超标;若不控制车流量,到2008年,即使兰州上路汽车排放达标,但街道地面CO浓度仍然容易超标。  相似文献   

3.
城市湍流边界层内汽车尾气扩散规律数值模拟研究   总被引:1,自引:1,他引:1  
吕萍  袁九毅  张文煜 《高原气象》2005,24(2):167-172
以纳维斯托克斯方程组、大气平流扩散方程、湍流动能及湍流动能耗散率方程组为基础.采用伪不定常方法,建立了一个数值模式.利用该模式列城市湍流边界层内流场结构及汽车排放污染物扩散规律进行了研究。结果表明:街谷内会形成一个涡旋型流场.汽车排放污染物浓度在地面及建筑物背风面产生堆积,且其沿高度方向的梯度变化在背风面大.迎风而小。随着街谷两侧建筑物屋顶风速的增大,峡谷内形成的涡旋流场的强度增大,污染物扩散速率增大:当屋顶来流与街道之间的夹角逐渐增大时.涡旋中心位置由街道中心偏向于背风面及更高层且污染物扩散速度加快。  相似文献   

4.
An analysis of the dynamics of the flow over a street canyon immersed in an atmospheric boundary layer is presented, using particle image velocimetry measurements in a wind tunnel. Care was taken to generate a 1:200 model scale urban type boundary layer that is correctly scaled to the size of the canyon buildings. Using proper orthogonal decomposition (POD) of the velocity field and conditional averaging techniques, it is first shown that the flow above the opening of the canyon consists of a shear layer separating from the upstream obstacle, animated by a coherent flapping motion and generating large-scale vortical structures. These structures are alternately injected into the canyon or shed off the obstacle into the outer flow. It is shown that unsteady fluid exchanges between the canyon and the outer flow are mainly driven by the shear layer. Finally, using POD, the non-linear interaction between the large-scale structures of the oncoming atmospheric boundary layer and the flow over the canyon is demonstrated.  相似文献   

5.
As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.  相似文献   

6.
Wind and temperature measurements from within and above a deep urban canyon (height/width = 2.1) were used to examine the thermal structure of air within the canyon, exchange of heat with the overlying atmosphere, and the possible impacts of surface heating on within-canyon air flow. Measurements were made over a range of seasons and primarily analysed for sunny days. This allowed the study of temperature differences between opposing canyon walls and between wall and air of more than 15°C in summer. The wall temperature patterns follow those of incoming solar radiation loading with a secondary daytime effect from the longwave exchange between the walls. In winter, the canyon walls receive little direct solar radiation, and temperature differences are largely due to anthropogenic heating of the building interiors. Cool air from aloft and heated air from canyon walls is shown to circulate within the canyon under cross-canyon flow. Roofs and some portions of walls heat up rapidly on clear days and have a large influence on heat fluxes and the temperature field. The magnitude and direction of the measured turbulent heat flux also depend strongly on the direction of flow relative to surface heating. However, these spatial differences are smoothed by the shear layer at the canyon top. Buoyancy effects from the heated walls were not seen to have as large an impact on the measured flow field as has been shown in numerical experiments. At night canyon walls are shown to be the source of positive sensible heat fluxes. The measurements show that materials and their location, as well as geometry, play a role in regulating the heat exchange between the urban surface and atmosphere.  相似文献   

7.
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.  相似文献   

8.
吕萍  袁九毅  张文煜 《高原气象》2004,23(4):534-539
利用数值模拟方法研究了微尺度街道峡谷范围内街谷几何结构及街道两侧建筑物高度对称性对街谷内流场及机动车排放污染物扩散规律的影响。结果表明:当街道峡谷高宽比>2.1时,街谷内的流场结构由一个完整的垂直涡旋变为上下两个反向运动的强弱不同的垂直涡旋。各类型街谷内污染物扩散水平从强到弱依次为迎风面建筑物高度大于背风面建筑物高度的街道峡谷,迎风面建筑物高度小于背风面建筑物高度的街道峡谷;平行型街道峡谷。  相似文献   

9.
An urban canopy model is developed for use in mesoscale meteorological and environmental modelling. The urban geometry is composed of simple homogeneous buildings characterized by the canyon aspect ratio (h/w) as well as the canyon vegetation characterized by the leaf aspect ratio (σ l ) and leaf area density profile. Five energy exchanging surfaces (roof, wall, road, leaf, soil) are considered in the model, and energy conservation relations are applied to each component. In addition, the temperature and specific humidity of canopy air are predicted without the assumption of thermal equilibrium. For radiative transfer within the canyon, multiple reflections for shortwave radiation and one reflection for longwave radiation are considered, while the shadowing and absorption of radiation due to the canyon vegetation are computed by using the transmissivity and the leaf area density profile function. The model is evaluated using field measurements in Vancouver, British Columbia and Marseille, France. Results show that the model quite well simulates the observations of surface temperatures, canopy air temperature and specific humidity, momentum flux, net radiation, and energy partitioning into turbulent fluxes and storage heat flux. Sensitivity tests show that the canyon vegetation has a large influence not only on surface temperatures but also on the partitioning of sensible and latent heat fluxes. In addition, the surface energy balance can be affected by soil moisture content and leaf area index as well as the fraction of vegetation. These results suggest that a proper parameterization of the canyon vegetation is prerequisite for urban modelling.  相似文献   

10.
为研究机动车辆排出的污染物在大气中的扩散规律,在北京做了小风条件下的街谷示踪试验。当楼顶风速u接近或大于1米/秒时,街谷内可形成一稳定的原生涡;u<0.6米/秒时原生涡将消失。对于楼之间空间较小的街谷,背风面和迎风面的示踪剂浓度平均比值可达8。浓度值沿楼层高度无明显变化;由于快车路旁松墙的阻挡和抬升作用,可能造成沿高度方向楼层中段的浓度偏高。在街谷外,除下风方路面上有一按下风距离的负幂指数衰减的浓度分布外,上风方路面上也有一按较大负幂指数衰减的分布。根据上述试验,给出了用以预测街谷中机动车辆排出的惰性气体污染物的扩散模式;模式中,对原生涡和小尺度湍流,做了分别处理。  相似文献   

11.
Large-eddy simulations are conducted to investigate the effects of the incoming turbulent structure of the flow on pollutant removal from an ideal canyon. The target canyon is a two-dimensional street canyon with an aspect ratio of 1.0 (building height to street width). Three turbulent flows upwind of the street canyon are generated by using different block configurations, and a tracer gas is released as a ground-level line source at the centre of the canyon floor. Mean velocity profiles for the three flows are similar, except near the roof. However, the root-mean-square values of the velocity fluctuations and the Reynolds shear stress increase with the friction velocity of the incoming turbulent flow. The spatially-averaged concentration within the canyon decreases with increasing friction velocity. Coherent structures of low-momentum fluid, generated above the upwind block configurations, contribute to pollutant removal, and the amount of pollutant removal is directly related to the size of the coherent structure.  相似文献   

12.
Air flow inside an array of cubes is simulated. Cubes (edge length 0.15 m) are arranged in a regular array, separated by 0.15 m in the streamwise and spanwise directions. Numerical simulations are performed based on Reynolds-averaged Navier–Stokes equations (RANS), solved in a computational fluid dynamics model (CFD), with standard k–ε turbulent closure (two prognostic equations are solved for the turbulent kinetic energy k and its dissipation ε, respectively). Simulations are validated against wind-tunnel data using a technique based on hit-rate calculations, and calculated statistical parameters. The results show that the horizontal velocity is very well modelled, and despite some discrepancies, the model that fulfils the hit-rate test criteria gives useful results that are used to investigate three-dimensional (3-D) flow structures. The 3-D analysis of the flow shows interesting patterns: the centre of the canyon vortex is at 3/4 of the canyon height, and stronger downward than upward motions are present within the canyon. Such behaviour is explained by the presence of a compensation flow through the side of the canyon, which enters the canyon from the upper part and exits from the lower part. This complex 3-D structure affects the tracer dispersion, and is responsible for pollutant transport and diffusion.  相似文献   

13.
Urban albedo change as a function of urban geometrical structure has been examined by using a two-dimensional urban block-canyon array model. The complex multiple reflections of incident photons in the urban canyon are simulated by using a Monte-Carlo method. The photons are tracked until they leave the canyon or are completely absorbed. In the model, the direct and diffuse components of incident solar radiation are introduced and the specular and isotropic reflection characteristics are considered for the relevant urban surfaces. The result shows that the urban albedo decreases as the urban irregularity increases as indicated by the model experiment of Aida (1982). The dependence of albedo on the incident solar zenith angle observed in the experiment is also confirmed for various urban models.As an application, some actual urban structures in the Marunouchi area in Tokyo are examined. Urban planning for absorption and reflection of solar radiation in urban areas is also discussed based on the analysis of the change in albedo with canyon dimensions and solar zenith angle.  相似文献   

14.
Large-eddy simulation (LES) is conducted to investigate the mechanism of pollutant removal from a two-dimensional street canyon with a building-height to street-width (aspect) ratio of 1. A pollutant is released as a ground-level line source at the centre of the canyon floor. The mean velocities, turbulent fluctuations, and mean pollutant concentration estimated by LES are in good agreement with those obtained by wind-tunnel experiments. Pollutant removal from the canyon is mainly determined by turbulent motions, except in the adjacent area to the windward wall. The turbulent motions are composed of small vortices and small-scale coherent structures of low-momentum fluid generated close to the plane of the roof. Although both small vortices and small-scale coherent structures affect pollutant removal, the pollutant is largely emitted from the canyon by ejection of low-momentum fluid when the small-scale coherent structures appear just above the canyon where the pollutant is retained. Large-scale coherent structures also develop above the canyon, but they do not always affect pollutant removal.  相似文献   

15.
The urban canyon radiation model of Arnfield (1976, 1982) is validated using measurements of long-wave fluxes taken within a scaled down urban canyon constructed from concrete building blocks. A custom-designed traversing system allowed miniature radiometers to be automatically moved around the perimeter of a canyon cross-section, thereby providing for the validation of individual model grid-points. The agreement between measured and modelled radiation is generally very good. Some differences between the two over the canyon walls are attributed to difficulties in achieving precise instrument orientation. Model results derived from the measured surface temperature data are compared to results using various approximation schemes more likely to be used in practice. Approximations based on canyon surface temperatures are superior to those using air temperature.  相似文献   

16.
The transfer processes within and above a simulated urban street canyon were investigated in a generic manner. Computational fluid dynamics (CFD) was used to aid understanding and to produce some simple operational parameterisations. In this study we addressed specifically the commonly met situation where buoyancy effects arising from elevated surface temperatures are not important, i.e. when mechanical forces outweigh buoyancy forces. In a geophysical context this requires that some suitably defined Richardson number is small. From an engineering perspective this is interpreted as the important case when heat transfer within and above urban street canyons is by forced convection. Surprisingly, this particular scenario (for which the heat transfer coefficient between buildings and the flow is largest), has been less well studied than the situation where buoyancy effects are important. The CFD technique was compared against wind-tunnel experiments to provide model evaluation. The height-to-width ratio of the canyon was varied through the range 0.5–5 and the flow was normal to the canyon axis. By setting the canyon’s facets to have the same or different temperatures or to have a partial temperature distribution, simulations were carried out to investigate: (a) the influence of geometry on the flow and mixing within the canyon and (b) the exchange processes within the canyon and across the canyon top interface. Results showed that the vortex-type circulation and turbulence developed within the canyon produced a temperature distribution that was, essentially, spatially uniform (apart from a relatively thin near-wall thermal boundary layer) This allowed the temperatures within the street canyon to be specified by just one value T can , the canyon temperature. The variation of T can with wind speed, surface temperatures and geometry was extensively studied. Finally, the exchange velocity u E across the interface between the canyon and the flow above was calculated based on a heat flux balance within the canyon and between the canyon and the flow above. Results showed that u E was approximately 1% of a characteristic wind velocity above the street canyon. The problem of radiative exchange is not addressed but it can, of course, be introduced analytically, or computationally, when necessary.  相似文献   

17.
A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.  相似文献   

18.
An approximate sky view factor (SVF) has been developed, which is capable of estimating the mean rate of net longwave radiant energy loss from urban street canyons. Reduced scale models of typical canyon geometries were used in outdoor tests to verify the predictions of radiant fluxes obtained using the proposed SVF. Air-surface temperature differences from the scale models are used together with hypothesized within-canyon airflow patterns to determine some quantitative characteristics of the wind field in canyons. Simple correlations are proposed for the relationship between mean in-canyon and pedestrian-level flow speeds on the one hand, and the ambient (above roof-level) wind speed on the other hand. As expected, the height/width ratio of a canyon controls the form and magnitude of the flow within.  相似文献   

19.
The influence of roof-edge roughness elements on airflow, heat transfer, and street-level pollutant transport inside and above a two-dimensional urban canyon is analyzed using an urban energy balance model coupled to a large-eddy simulation model. Simulations are performed for cold (early morning) and hot (mid afternoon) periods during the hottest month of the year (August) for the climate of Abu Dhabi, United Arab Emirates. The analysis suggests that early in the morning, and when the tallest roughness elements are implemented, the temperature above the street level increases on average by 0.5 K, while the pollutant concentration decreases by 2% of the street-level concentration. For the same conditions in mid afternoon, the temperature decreases conservatively by 1 K, while the pollutant concentration increases by 7% of the street-level concentration. As a passive or active architectural solution, the roof roughness element shows promise for improving thermal comfort and air quality in the canyon for specific times, but this should be further verified experimentally. The results also warrant a closer look at the effects of mid-range roughness elements in the urban morphology on atmospheric dynamics so as to improve parametrizations in mesoscale modelling.  相似文献   

20.
The impact of diurnal variations of the heat fluxes from building and ground surfaces on the fluid flow and air temperature distribution in street canyons is numerically investigated using the PArallelized Large-eddy Simulation Model (PALM). Simulations are performed for a 3 by 5 array of buildings with canyon aspect ratio of one for two clear summer days that differ in atmospheric instability. A detailed building energy model with a three-dimensional raster-type geometry—Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES)—provides urban surface heat fluxes as thermal boundary conditions for PALM. In vertical cross-sections at the centre of the spanwise canyon the mechanical forcing and the horizontal streamwise thermal forcing at roof level outweigh the thermal forces from the heated surfaces inside the canyon in defining the general flow pattern throughout the day. This results in a dominant canyon vortex with a persistent speed, centered at a constant height. Compared to neutral simulations, non-uniform heating of the urban canyon surfaces significantly modifies the pressure field and turbulence statistics in street canyons. Strong horizontal pressure gradients were detected in streamwise and spanwise canyons throughout the day, and which motivate larger turbulent velocity fluctuations in the horizontal directions rather than in the vertical direction. Canyon-averaged turbulent kinetic energy in all non-neutral simulations exhibits a diurnal cycle following the insolation on the ground in both spanwise and streamwise canyons, and it is larger when the canopy bottom surface is paved with darker materials and the ground surface temperature is higher as a result. Compared to uniformly distributed thermal forcing on urban surfaces, the present analysis shows that realistic non-uniform thermal forcing can result in complex local airflow patterns, as evident, for example, from the location of the vortices in horizontal planes in the spanwise canyon. This study shows the importance of three-dimensional simulations with detailed thermal boundary conditions to explore the heat and mass transport in an urban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号