首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the paper, we have discovered the abnormal area distribution features of maximum variation values of ground motion parameter uncertainty with different probabilities of exceedance in 50 years within the range of 100°~120°E,29°~42°N for the purpose to solve the problem that abnormal areas of maximum variation values of ground motion parameter uncertainties emerge in a certain cities and towns caused by seismicity parameter uncertainty in a seismic statistical region in an inhomogeneous distribution model that considers tempo-spatial nonuniformity of seismic activity. And we have also approached the interrelation between the risk estimation uncertainty of a site caused by seismicity parameter uncertainty in a seismic statistical region and the delimitation of potential sources, as well as the reasons for forming abnormal areas. The results from the research indicate that the seismicity parameter uncertainty has unequal influence on the uncertainty of risk estimation at each site in a statistical region in the inhomogeneous distribution model, which relates to the scheme for delimiting potential sources. Abnormal areas of maximum variation values of ground motion parameter uncertainty often emerge in the potential sources of Mu≥8 (Mu is upper limit of a potential source) and their vicinity. However, this kind of influence is equal in the homogeneous distribution model. The uncertainty of risk estimation of each site depends on its seat. Generally speaking, the sites located in the middle part of a statistical region are only related to the seismicity parameter uncertainty of the region, while the sites situated in or near the juncture of two or three statistical regions might be subject to the synthetic influences of seismicity parameter uncertainties of several statistical regions.  相似文献   

2.
3.
In this paper, a soil–pile–structure model is tested on a shaking table subject to both a sinusoidal wave and the acceleration time history of the scaled 1940 El Centro earthquake. A medium-size river sand is compacted into a 1.7-m-high laminar rectangular tank to form a loose fill with a relative density of 15%. A single-storey steel structure of 2.54 ton is placed on a concrete pile cap, which is connected to the four end-bearing piles. A very distinct pounding phenomenon between soil and pile is observed; and, the acceleration response of the pile cap can be three times larger than that of the structural response. The pounding is due to the development of a gap separation between soil and pile, and the extraordinary large inertia force suffered at the top of the pile also induces cracking in the pile. To explain this observed phenomenon, nonlinear finite element method (FEM) analyses with a nonlinear gap element have been carried out. The spikes in the acceleration response of the pile cap caused by pounding can be modeled adequately by the FEM analyses. The present results suggest that one of the probable causes of pile damages is due to seismic pounding between the laterally compressed soil and the pile near the pile cap level.  相似文献   

4.
Seismicity preceding the September–October 1989 flank eruption at Mt. Etna volcano has been analysed by means of the fractal two-point correlation dimension Dc relative to epicentres distribution and the scaling exponent D inferred from the seismic b-value. Time evolution of Dc and D preceding the eruption onset revealed: a general decrease of Dc and increase of D (9–4 months prior the eruption onset), intermittent rates of Dc increase and D decrease (4 to 1 month), steady high values of Dc and low values of D (1 month) and sharp decreases of Dc and D marking the eruption onset. Results allowed to constrain the increment of seismic damage by recognising negative (mechanical hardening) and positive (mechanical softening) feedback prior the eruption onset.  相似文献   

5.
Sponsored by the Chinese National Fundamental Research and Development Program in 2001,Guang-zhou Marine Geological Survey launched out a long geophysical survey from the northeastern part of the South China Sea (SCS),through the Luzon Arc,to the Huatung Basin and the Gagua Ridge. Based on high-resolution seismic data from this survey,combined with gravimetric and magnetic modeling,a systematic effort is made to the study of the regional geodynamics offshore southern Taiwan. By focusing particularly on precollisional tectonic interactions between adjacent geological units and their tectonic affiliations,this study can help reveal early arc-continent collisional processes that formed the Taiwan orogen. The construction of the Manila accretionary prism and its eastward progressive deformation indicate that the subduction of SCS have experienced multiple phases of increased activity. Active precollisional crustal shortening within the Northern Luzon Trough resulted in tilting of sedimentary layers at angles between 6° and 13°. But the shortening induced by tilting accounts for only a tiny part of regional total crustal compression. The eastern flank of the Luzon Arc appears to be more active than the rest,evidenced by active faulting and folding in the intra-arc basins on the eastern flank. Magnetic modeling/inversion shows that the Luzon Arc may have experienced multiple phases of magmatic activities,causing lateral magnetic inhomogeneity. Bouguer gravity anomalies and gravity modeling indicate that the Huatung Basin has anomalously higher crustal and upper mantle densities than those of SCS and the Luzon Arc. In addition,there is a large bathymetric difference between the Huatung Basin and the northeastern part of SCS basin. These observations argue against early hypothesis that the Huatung Basin and the northeastern part of SCS basin may once have belonged to one single oceanic crust,in part or in whole. The Gagua Ridge,as a sliver of uplifted oceanic crust,may be related to a transient northwestward subduction of the western Philippine plate. All evidences point to the argument that the region offshore southern Taiwan is experiencing multiple terrain amalgamation,which is a classical model for continental growth.  相似文献   

6.
In this work we present and discuss the results of ambient seismic noise analyses computed at four sites where seismic stations, managed by the INGV (Italian Institute for Geophysics and Vulcanology) and the DPC (Italian Department of Civil Protection), are installed inside buildings. The experiments were performed considering different types of installation: sensor located at the bottom of a school, directly installed on rock (case 1); sensor located at the bottom of a medieval fortress, built on an isolate hill, directly installed on rock (case 2); sensor installed on the foundations of a medieval fortress, built on an isolate hill (case 3); sensor installed on the foundations of a school, built on alluvial deposits (case 4). Since recent works proposed the use of spectral ratio techniques to study the dynamic characterization of buildings, ambient seismic-noise measurements were performed for each site close to the stations (at the base of the structures), at the top of the structures and outside the buildings. In order to check the source of vibrations both horizontal to vertical spectral ratio (HVNR) and standard spectral ratio (SSR) techniques were applied. For all stations the results from ambient seismic noise were compared to those obtained from earthquakes (HVSR). In order to detect preferential directions of amplification, for each site average HVNRs and HVSRs were computed considering one azimuth for each set of 5°. We obtain different results for different types of installation: in cases 1 and 2, where the sensors are directly installed on rock, the vibrations of the structure do not affect the noise measures performed close to the stations, which show flat HVNR in the whole frequency range: in both cases the eigenfrequency of the building is given by the HVNR calculated from the measures performed at the top of the structure. In cases 3 and 4, where the sensors are installed on the foundations of the considered structures, both the amplification peaks between 5 and 9 Hz (case 3) and between 5.5 and 7 Hz (case 4) include the contribution of the free oscillations of the buildings. In particular, in case 4, HVNRs performed outside building highlight possible soil–structure resonance effects in case of an earthquake.  相似文献   

7.
Introduction Potential seismic sources are the areas where destructive earthquakes will probably occur. Being an important work in probability approach of seismic zonation, the determination of potential seismic sources is based on the study of seismicity, seismic tectonics and seismic zone. It has strong effects on the final results of seismic zonation (State Seismological Bureau, 1996). For the different observing view, there are various demarcations in the same region for different resear…  相似文献   

8.
Seismic analysis of soil–well–pier system was carried out using three different approaches to evaluate their comparative performance and associated complexities. These approaches were (a) two-dimensional nonlinear (2D-NL), (b) two-dimensional equivalent-linear (2D-EqL), and (c) one-dimensional spring–dashpot (1D). Soil was modeled as 2D plane-strain elements in the 2D-NL and 2D-EqL approaches, and as springs and dashpots in the 1D approach. Nonlinear behavior of soil was captured rigorously in the 2D-NL approach and approximately in the remaining two approaches. Results of the two approximate analyses (i.e., 2D-EqL and 1D) were compared with those of the 2D-NL analysis with the objective to assess suitability of approximate analysis for practical purposes. In the 1D approach, several combinations of Novak's and Veletsos' springs were used to come up with a simplified 1D model using three types of spring–dashpots. The proposed model estimates the displacement and force resultants relatively better than the other 1D models available in literature.  相似文献   

9.
This paper includes an analysis of the influence of soil plasticity on the seismic response of micropiles. Analysis is carried out using a global three-dimensional modeling in the time domain. The soil behavior is described using the non-associated Mohr–Coulomb criterion. Both the micropiles and the superstructure are modeled as three-dimensional beam elements. Proper boundary conditions are used to ensure waves transmission through the lateral boundaries of the soil mass. Analyses are first conducted for harmonic loadings and then for real earthquake records. They show that plasticity could have a significant influence on the seismic response of the soil–micropiles–structure systems. This influence depends on the amplitude of the seismic loading and the dominant frequencies of both the input motion and the soil–piles–structure system.  相似文献   

10.
Different approaches and tools have been adopted for the analysis and characterization of regional seismicity based on spatio–temporal series of event occurrences. Two main aspects of interest in this context concern scaling properties and dimensional interaction. This paper is focused on the statistical use of information-theoretic concepts and measures in the analysis of structural complexity of seismic distributional patterns. First, contextual significance is motivated, and preliminary elements related to informational entropy, complexity and multifractal analysis are introduced. Next, several technical and methodological extensions are proposed. Specifically, limiting behaviour of some complexity measures in connection with generalized dimensions is established, justifying a concept of multifractal complexity. Under scaling behaviour, a mutual-information-related dependence coefficient for assessing spatio–temporal interaction is defined in terms of generalized dimensions. Also, an alternative form of generalized dimensions based on Tsallis entropy convergence rates is formulated. Further, possible incorporation of effects, such as earthquake magnitude, is achieved in terms of weighted box-counting distributions. Different aspects in relation to the above elements are analyzed and illustrated using two well-known series of seismic event data of an underlying different nature, occurred in the areas of Agrón (Granada, Spain) and El Hierro (Canary Islands, Spain). Finally, various related directions for continuing research are indicated.  相似文献   

11.
This study analyses the temporal clustering, spatial clustering, and statistics of the 2012–2013 Torreperogil-Sabiote (southern Spain) seismic swarm. During the swarm, more than 2200 events were located, mostly at depths of 2–5 km, with magnitude event up to mbLg 3.9 (Mw 3.7). On the basis of daily activity rate, three main temporal phases are identified and analysed. The analysis combines different seismological relationships to improve our understanding of the physical processes related to the swarm's occurrence. Each temporal phase is characterized by its cumulative seismic moment. Using several different approaches, we estimate a catalog completeness magnitude of mc≅ 1.5. The maximum likelihood b-value estimates for each swarm phase are 1.11 ± 0.09, 1.04 ± 0.04, and 0.90 ± 0.04, respectively. To test the hypothesis that a b-value decrease is a precursor to a large event, we study temporal variations in b-value using overlapping moving windows. A relationship can be inferred between change in b-value and the regime style of the rupture. b-values are indicators of the stress regime, and influence the size of ruptures. The fractal dimension D2 is used to perform spatial analysis. Cumulative gamma and beta functions are used to analyse the behaviour of inter-event distances during the earthquake sequence.  相似文献   

12.
The effects of soil–structure interaction on the performance of a nonlinear seismic base isolation system for a simple elastic structure are examined. The steady-state response of the system to harmonic excitation is obtained by use of the equivalent linearization method. Simple analytical expressions for the deformation of the base isolation system and of the superstructure at resonance are obtained in terms of an effective replacement oscillator characterized by amplitude-dependent frequency, damping ratio, and excitation. Numerical results suggest that the seismic response of a structure resting on an inelastic base isolation system may be larger when the flexibility of the soil is considered than the corresponding response obtained by ignoring the effects of soil–structure interaction. It is shown that, in the undamped case and in the absence of soil–structure interaction effects, a critical harmonic excitation exists beyond which the steady-state resonant response of the isolators and structure become unbounded.  相似文献   

13.
The study of earthquake swarms and their characteristics can improve our understanding of the transient processes that provoke seismic crises. The spatio-temporal process of the energy release is often linked with changes of statistical properties, and thus, seismicity parameters can help to reveal the underlying mechanism in time and space domains. Here, we study the Torreperogil–Sabiote 2012–2013 seismic series (southern Spain), which was relatively long lasting, and it was composed by more than 2000 events. The largest event was a magnitude 3.9 event which occurred on February 5, 2013. It caused slight damages, but it cannot explain the occurrence of the whole seismic crises which was not a typical mainshock–aftershock sequence. To shed some light on this swarm occurrence, we analyze the change of statistical properties during the evolution of the sequence, in particular, related to the magnitude and interevent time distributions. Furthermore, we fit a modified version of the epidemic type aftershock sequence (ETAS) model in order to investigate changes of the background rates and the trigger potential. Our results indicate that the sequence was driven by an aseismic transient stressing rate and that the system passes after the swarm occurrence to a new forcing regime with more typical tectonic characteristics.  相似文献   

14.
The coherent behavior of four parameters characterizing the global field of low-frequency (periods from 2 to 500 min) seismic noise is studied. These parameters include logarithmic variance, kurtosis (coefficient of excess), width of support of multifractal singularity spectrum, and minimal normalized entropy of the distribution of the squared orthogonal wavelet coefficients. The analy)sis is based on the data from 229 broadband stations of GSN, GEOSCOPE, and GEOFON networks for a 16-year period from the beginning of 1997 to the end of 2012. The entire set of stations is subdivided into eight groups, which, taken together, provide full coverage of the Earth. The daily median values of the studied noise parameters are calculated in each group. This procedure yields four 8-dimensional time series with a time step of 1 day with a length of 5844 samples in each scalar component. For each of the four 8-dimensional time series, the frequency-time diagram of the evolution of the spectral measure of coherence (based on canonical coherences) is constructed in the moving time window with a length of 365 days. Besides, for each parameter, the maximum-frequency values of the coherence measure and their mean over the four analyzed noise parameters are calculated as a measure of synchronization that depends on time only. Based on the conducted analysis, it is concluded that the increase in the intensity of the strongest (M ≥ 8.5) earthquakes after the mega-earthquake on Sumatra on December 26, 2004 was preceded by the enhancement of synchronization between the parameters of global seismic noise over the entire time interval of observations since the beginning of 1997. This synchronization continues growing up to the end of the studied period (2012), which can be interpreted as a probable precursor of the further increase in the intensity of the strongest earthquakes all over the world.  相似文献   

15.
16.
Decelerating generation of preshocks in a narrow (seismogenic) region and accelerating generation of other preshocks in a broader (critical) region, called decelerating–accelerating seismic strain (D-AS) model has been proposed as appropriate for intermediate-term earthquake prediction. An attempt is made in the present work to identify such seismic strain patterns and estimate the corresponding probably ensuing large mainshocks (M ≥ 7.0) in south Japan (30–38° N, 130–138° E). Two such patterns have been identified and the origin time, magnitude, and epicenter coordinates for each of the two corresponding probably ensuing mainshocks have been estimated. Model uncertainties of predicted quantities are also given to allow an objective forward testing of the efficiency of the model for intermediate-term earthquake prediction.  相似文献   

17.
Performance based design of structure requires a reasonably accurate prediction of displacement or ductility demand. Generally, displacement demand of structure is estimated assuming fixity at base and considering base motion in one direction. In reality, ground motions occur in two orthogonal directions simultaneously resulting in bidirectional interaction in inelastic range, and soil–structure interaction (SSI) may change structural response too. Present study is an attempt to develop insight on the influence of bi-directional interaction and soil–pile raft–structure interaction for predicting the inelastic response of soil–pile raft–structure system in a more reasonably accurate manner. A recently developed hysteresis model capable to simulate biaxial interaction between deformations in two principal directions of any structural member under two orthogonal components of ground motion has been used. This study primarily shows that a considerable change may occur in inelastic demand of structures due to the combined effect of such phenomena.  相似文献   

18.
A large mainshock may trigger numerous aftershocks within a short period, and large aftershocks have the potential to cause additional cumulative damage to structures. This paper investigates the effects and potential of aftershocks on the accumulated damage of concrete gravity dams. For that purpose, 30 as-recorded mainshock–aftershock seismic sequences are considered in this study, and a typical two-dimensional gravity dam model subjected to the selected as-recorded seismic sequences is modeled. A Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is selected for the concrete material. This model is used to evaluate the nonlinear dynamic response and the seismic damage process of Koyna dam under mainshock–aftershock seismic sequences. According to the characteristics of the cracking damage development, the local and global damage indices are both established to study the influence of strong aftershocks on the cumulative damage of concrete gravity dams. From the results of this investigation, it is found that the as-recorded sequences of ground motions have a significant effect on the accumulated damage and on the design of concrete gravity dams.  相似文献   

19.
The dynamic through–soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM–FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernoulli beams. This formulation has been enhanced to include the presence of linear superstructures founded on pile groups, so that structure–soil–structure interaction (SSSI) can be investigated making use of a direct methodology with an affordable number of degrees of freedom. The influence of SSSI on lateral spectral deformation, vertical and rotational response, and shear forces at pile heads, for several configurations of shear one-storey buildings, is addressed. Maximum response spectra are also presented. SSSI effects on groups of structures with similar dynamic characteristics have been found to be important. The system response can be either amplified or attenuated according to the distance between adjacent buildings, which has been related to dynamic properties of the overall system.  相似文献   

20.
A large mainshock may trigger numerous aftershocks within a short period, and nuclear power plant (NPP) structures have the probability to be exposed to mainshock–aftershock seismic sequences. However, the researchers focused on seismic analyses of reinforced concrete containment (RCC) buildings under only mainshocks. The aim of this paper is to thoroughly investigate the dynamic responses of a RCC building under mainshock–aftershock seismic sequences. For that purpose, 10 as-recorded mainshock–aftershock seismic sequences with two horizontal components are considered in this study, and a typical three-dimensional RCC model subjected to the selected as-recorded seismic sequences is established. Peak ground accelerations (PGAs) of mainshocks equal to 0.3 g (safe shutdown earthquake load-SSE load) are considered in this paper. The results indicate that aftershocks have a significant effect on the responses of the RCC in terms of maximum top accelerations, maximum top displacements and accumulated damage. Furthermore, in order to preserve the RCC from large damage under repeated earthquakes, local damage and global damage indices are suggested as limitations under only mainshocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号