首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We investigate the orbital diffusion and the stickiness effects in the phase space of a 3-dimensional volume preserving mapping. We first briefly review the main results about the stickiness effects in 2-dimensional mappings. Then we extend this study to the 3-dimensional case, studying for the first time the behavior of orbits wandering in the 3-dimensional phase space and analyzing the role played by the hyperbolic invariant sets during the diffusion process. Our numerical results show that an orbit initially close to a set of invariant tori stays for very long times around the hyperbolic invariant sets near the tori. Orbits starting from the vicinity of invariant tori or from hyperbolic invariant sets have the same diffusion rule. These results indicate that the hyperbolic invariant sets play an essential role in the stickiness effects. The volume of phase space surrounded by an invariant torus and its variation with respect to the perturbation parameter influences the stickiness effects as well as the development of the hyperbolic invariant sets. Our calculations show that this volume decreases exponentially with the perturbation parameter and that it shrinks down with the period very fast.  相似文献   

2.
Due to the existence of invariant tori, chaotic sea and hyperbolic structures in higher dimensional phase space of a volume-preserving map, the diffusion route of chaotic orbits will be complicated. The velocity of diffusion will be very slow if the orbits are near an invariant torus. In order to realize this complicated diffusion phenomenon, in this paper we study the diffusion characters in the different regions, i.e., chaotic, hyperbolic and invariant tori's regions. We find that for the three different regions, the diffusion velocities are different. The diffusion velocity in the vicinity of an invariant torus is the slowest one. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The paper deals with different kinds of invariant motions (periodic orbits, 2D and 3D invariant tori and invariant manifolds of periodic orbits) in order to analyze the Hamiltonian direct Hopf bifurcation that takes place close to the Lyapunov vertical family of periodic orbits of the triangular equilibrium point L4 in the 3D restricted three-body problem (RTBP) for the mass parameter, μ greater than (and close to) μR (Routh’s mass parameter). Consequences of such bifurcation, concerning the confinement of the motion close to the hyperbolic orbits and the 3D nearby tori are also described.  相似文献   

4.
The spectra of ‘stretching numbers’ (or ‘local Lyapunov characteristic numbers’) are different in the ordered and in the chaotic domain. We follow the variation of the spectrum as we move from the centre of an island outwards until we reach the chaotic domain. As we move outwards the number of abrupt maxima in the spectrum increases. These maxima correspond to maxima or minima in the curve a(θ), where a is the stretching number, and θ the azimuthal angle. We explain the appearance of new maxima in the spectra of ordered orbits. The orbits just outside the last KAM curve are confined close to this curve for a long time (stickiness time) because of the existence of cantori surrounding the island, but eventually escape to the large chaotic domain further outside. The spectra of sticky orbits resemble those of the ordered orbits just inside the last KAM curve, but later these spectra tend to the invariant spectrum of the chaotic domain. The sticky spectra are invariant during the stickiness time. The stickiness time increases exponentially as we approach an island of stability, but very close to an island the increase is super exponential. The stickiness time varies substantially for nearby orbits; thus we define a probability of escape Pn(x) at time n for every point x. Only the average escape time in a not very small interval Δx around each x is reliable. Then we study the convergence of the spectra to the final, invariant spectrum. We define the number of iterations, N, needed to approach the final spectrum within a given accuracy. In the regular domain N is small, while in the chaotic domain it is large. In some ordered cases the convergence is anomalously slow. In these cases the maximum value of ak in the continued fraction expansion of the rotation number a = [a0,a1,... ak,...] is large. The ordered domain contains small higher order chaotic domains and higher order islands. These can be located by calculating orbits starting at various points along a line parallel to the q-axis. A monotonic variation of the sup {q}as a function of the initial condition q0 indicates ordered motions, a jump indicates the crossing of a localized chaotic domain, and a V-shaped structure indicates the crossing of an island. But sometimes the V-shaped structure disappears if the orbit is calculated over longer times. This is due to a near resonance of the rotation number, that is not followed by stable islands. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We study homoclinic transport to Lyapunov orbits around a collinear libration point in the planar restricted three body problem. A method to compute homoclinic orbits is first described. Then we introduce the scattering map for this problem (defined on a suitable normally hyperbolic invariant manifold) and we show how to compute it using the information already obtained for the homoclinic orbits. An example application to Astrodynamics is also proposed.  相似文献   

6.
A new fully numerical method is presented which employs multiple Poincaré sections to find quasiperiodic orbits of the Restricted Three-Body Problem (RTBP). The main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior near chaotic regions that leads to full convergence for given family of quasiperiodic orbits and the minimal memory required to store these orbits. This method reduces the calculations required for searching two-dimensional invariant tori to a search for closed orbits, which are the intersection of the invariant tori with the Poincaré sections. Truncated Fourier series are employed to represent these closed orbits. The flow of the differential equation on the invariant tori is reduced to maps between the consecutive Poincaré maps. A Newton iteration scheme utilizes the invariance of the circles of the maps on these Poincaré sections in order to find the Fourier coefficients that define the circles to any given accuracy. A continuation procedure that uses the incremental behavior of the Fourier coefficients between close quasiperiodic orbits is utilized to extend the results from a single orbit to a family of orbits. Quasi-halo and Lissajous families of the Sun–Earth RTBP around the L2 libration point are obtained via this method. Results are compared with the existing literature. A numerical method to transform these orbits from the RTBP model to the real ephemeris model of the Solar System is introduced and applied.  相似文献   

7.
We give a constructive proof of the existence of elliptic lower dimensional tori in nearly integrable Hamiltonian systems. In particular we adapt the classical Kolmogorov normalization algorithm to the case of planetary systems, for which elliptic tori may be used as replacements of elliptic Keplerian orbits in Lagrange-Laplace theory. With this paper we support with rigorous convergence estimates the semi-analytic work in our previous article (Sansottera et al., Celest Mech Dyn Astron 111:337–361, 2011), where an explicit calculation of an invariant torus for a planar model of the Sun-Jupiter-Saturn-Uranus system has been made. With respect to previous works on the same subject we exploit the characteristic of Lie series giving a precise control of all terms generated by our algorithm. This allows us to slightly relax the non-resonance conditions on the frequencies.  相似文献   

8.
我们已经研究了分别具椭圆和双曲不动点的二维保测度映射及其受摄三维扩张的KS熵。本文研究一类具抛物不动点的二维保测度映射:及其受摄扩张:的KS熵随参数A、B、C、D、E的变化.数值探索结果表明:适当定义区域内的二维映射T2的KS熵与A无关,与我们的理论分析结果相一致。受摄扩张映射T3的KS熵随摄动参数B、C、D的增大而增大,却随E的增大而减小.我们还发现,随着摄动的逐渐增强,映射T3的不变环面将逐渐破裂,使更多的轨道逃逸,从而可能使映射T3的KS熵减小。另外,不变环面存在的判别式在大范围内仍在一定程度上有效。  相似文献   

9.
In a previous paper (Voglis et al., Paper I), we demonstrated that, in a rotating galaxy with a strong bar, the unstable asymptotic manifolds of the short-period family of unstable periodic orbits around the Lagrangian points L 1 or L 2 create correlations among the apocentric positions of many chaotic orbits, thus supporting a spiral structure beyond the bar. In this paper, we present evidence that the unstable manifolds of all the families of unstable periodic orbits near and beyond corotation contribute to the same phenomenon. Our results refer to a N -body simulation, a number of drawbacks of which, as well as the reasons why these do not significantly affect the main results, are discussed. We explain the dynamical importance of the invariant manifolds as due to the fact that they produce a phenomenon of 'stickiness' slowing down the rate of chaotic escape in an otherwise non-compact region of the phase space. We find a stickiness time of the order of 100 dynamical periods, which is sufficient to support a long-living spiral structure. Manifolds of different families become important at different ranges of values of the Jacobi constant. The projections of the manifolds of all the different families in the configuration space produce a pattern due to the 'coalescence' of the invariant manifolds. This follows closely the maxima of the observed   m = 2  component near and beyond corotation. Thus, the manifolds support both the outer edge of the bar and the spiral arms.  相似文献   

10.
We discuss the runaway instability of axisymmetric tori with non-constant specific angular momentum around black holes, taking into account self-gravity of the tori. The distribution of specific angular momentum of the tori is assumed to be a positive power law with respect to the distance from the rotational axis. By employing the pseudo-Newtonian potential for the gravity of the spherical black hole, we have found that self-gravity of the tori causes a runaway instability if the amount of the mass which is transferred from the torus to the black hole exceeds a critical value, i.e. 3 per cent of the mass of the torus. This has been shown by two different approaches: (1) by using equilibrium models and (2) by dynamical simulations. In particular, dynamical simulations using an SPH code have been carried out for both self-gravitating and non-self-gravitating tori. For non-self-gravitating models, all tori are runaway stable. Therefore we come to the conclusion that self-gravity of the tori has a stronger destabilizing effect than the stabilizing effect of the positive power-law distribution of the angular momentum.  相似文献   

11.
Two simple and efficient numerical methods to explore the phase space structure are presented, based on the properties of the "dynamical spectra". 1) We calculate a "spectral distance" D of the dynamical spectra for two different initial deviation vectors. D → 0 in the case of chaotic orbits, while D → const ≠ 0 in the case of ordered orbits. This method is by orders of magnitude faster than the method of the Lyapunov Characteristic Number (LCN). 2) We define a sensitive indicator called ROTOR (ROtational TOri Recongnizer) for 2D maps. The ROTOR remains zero in time on a rotational torus, while it tends to infinity at a rate ∝ N = number of iterations, in any case other than a rotational torus. We use this method to locate the last KAM torus of an island of stability, as well as the most important cantori causing stickiness near it. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We adapt the Kolmogorov’s normalization algorithm (which is the key element of the original proof scheme of the KAM theorem) to the construction of a suitable normal form related to an invariant elliptic torus. As a byproduct, our procedure can also provide some analytic expansions of the motions on elliptic tori. By extensively using algebraic manipulations on a computer, we explicitly apply our method to a planar four-body model not too different with respect to the real Sun–Jupiter–Saturn–Uranus system. The frequency analysis method allows us to check that our location of the initial conditions on an invariant elliptic torus is really accurate.  相似文献   

13.
Stickiness is a temporary confinement of orbits in a particular region of the phase space before they diffuse to a larger region. In a system of 2-degrees of freedom there are two main types of stickiness (a) stickiness around an island of stability, which is surrounded by cantori with small holes, and (b) stickiness close to the unstable asymptotic curves of unstable periodic orbits, that extend to large distances in the chaotic sea. We consider various factors that affect the time scale of stickiness due to cantori. The overall stickiness (stickiness of the second type) is maximum near the unstable asymptotic curves. An important application of stickiness is in the outer spiral arms of strong-barred spiral galaxies. These spiral arms consist mainly of sticky chaotic orbits. Such orbits may escape to large distances, or to infinity, but because of stickiness they support the spiral arms for very long times.  相似文献   

14.
For the circular restricted three-body problem of celestial mechanics with small secondary mass, we prove the existence of uniformly hyperbolic invariant sets of non-planar periodic and chaotic almost collision orbits. Poincaré conjectured existence of periodic ones and gave them the name “second species solutions”. We obtain large subshifts of finite type containing solutions of this type.  相似文献   

15.
We present results of a study of the so-called “stickiness” regions where orbits in mappings and dynamical systems stay for very long times near an island and then escape to the surrounding chaotic region. First we investigated the standard map in the form xi+1 = xi+yi+1 and yi+1 = yi+K/2π · sin(2πxi) with a stochasticity parameter K = 5, where only two islands of regular motion survive. We checked now many consecutive points—for special initial conditions of the mapping—stay within a certain region around the island. For an orbit on an invariant curve all the points remain forever inside this region, but outside the “last invariant curve” this number changes significantly even for very small changes in the initial conditions. In our study we found out that there exist two regions of “sticky” orbits around the invariant curves: A small region I confined by Cantori with small holes and an extended region II is outside these cantori which has an interesting fractal character. Investigating also the Sitnikov-Problem where two equally massive primary bodies move on elliptical Keplerian orbits, and a third massless body oscillates through the barycentre of the two primaries perpendicularly to the plane of the primaries—a similar behaviour of the stickiness region was found. Although no clearly defined border between the two stickiness regions was found in the latter problem the fractal character of the outer region was confirmed.  相似文献   

16.
We deal with the study of the spatial restricted three-body problem in the case where the small particle is far from the primaries, that is, the so-called comet case. We consider the circular problem, apply double averaging and compute the relative equilibria of the reduced system. It appears that, in the circular problem, we find not only part of the equilibria existing in the elliptic case, but also new ones. These critical points are in correspondence with periodic and quasiperiodic orbits and invariant tori of the non-averaged Hamiltonian. We explain carefully the transition between the circular and the elliptic problems. Moreover, from the relative equilibria of elliptic type, we obtain invariant 3-tori of the original system.  相似文献   

17.
18.
We consider the possibility of particles being injected at the interior of a reconnecting current sheet (RCS), and study their orbits by dynamical systems methods. As an example we consider orbits in a 3D Harris type RCS. We find that, despite the presence of a strong electric field, a 'mirror' trapping effect persists, to a certain extent, for orbits with appropriate initial conditions within the sheet. The mirror effect is stronger for electrons than for protons. In summary, three types of orbits are distinguished: (i) chaotic orbits leading to escape by stochastic acceleration, (ii) regular orbits leading to escape along the field lines of the reconnecting magnetic component, and (iii) mirror-type regular orbits that are trapped in the sheet, making mirror oscillations. Dynamically, the latter orbits lie on a set of invariant KAM tori that occupy a considerable amount of the phase space of the motion of the particles. We also observe the phenomenon of 'stickiness', namely chaotic orbits that remain trapped in the sheet for a considerable time. A trapping domain, related to the boundary of mirror motions in velocity space, is calculated analytically. Analytical formulae are derived for the kinetic energy gain in regular or chaotic escaping orbits. The analytical results are compared with numerical simulations.  相似文献   

19.
We demonstrate the remarkable effectiveness of boundary value formulations coupled to numerical continuation for the computation of stable and unstable manifolds in systems of ordinary differential equations. Specifically, we consider the circular restricted three-body problem (CR3BP), which models the motion of a satellite in an Earth–Moon-like system. The CR3BP has many well-known families of periodic orbits, such as the planar Lyapunov orbits and the non-planar vertical and halo orbits. We compute the unstable manifolds of selected vertical and halo orbits, which in several cases leads to the detection of heteroclinic connections from such a periodic orbit to invariant tori. Subsequent continuation of these connecting orbits with a suitable end point condition and allowing the energy level to vary leads to the further detection of apparent homoclinic connections from the base periodic orbit to itself, or the detection of heteroclinic connections from the base periodic orbit to other periodic orbits. Some of these connecting orbits are of potential interest in space mission design.  相似文献   

20.
We study the motion of an infinitesimal mass point under the gravitational action of three mass points of masses μ, 1–2μ and μ moving under Newton's gravitational law in circular periodic orbits around their center of masses. The three point masses form at any time a collinear central configuration. The body of mass 1–2μ is located at the center of mass. The paper has two main goals. First, to prove the existence of four transversal ejection–collision orbits, and second to show the existence of an uncountable number of invariant punctured tori. Both results are for a given large value of the Jacobi constant and for an arbitrary value of the mass parameter 0<μ≤1/2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号