首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computer program is developed for hull/mooring/riser coupled dynamic analysis of a tanker-based turret-moored FPSO (Floating Production Storage and Offloading) in waves, winds, and currents. In this computer program, the floating body is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass, and radiation damping at various yaw angles are calculated from the second-order diffraction/radiation panel program WAMIT. The wind and current forces for various yaw angles of FPSO are modeled following the empirical method suggested by OCIMF (Oil Company International Marine Forum).

The mooring/riser dynamics are modeled using a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. The dynamics of hull, mooring lines, and risers are solved simultaneously at each time step in a combined matrix for the specified connection condition. For illustration, semi-taut chain-steel wire-chain mooring lines and steel catenary risers are employed and their effects on global FPSO hull motions are investigated. To better understand the physics related to the motion characteristics of a turret-moored FPSO, the role of various hydrodynamic contributions is analyzed and assessed including the effects of hull and mooring/riser viscous damping, second-order difference-frequency wave-force quadratic transfer functions, and yaw-angle dependent wave forces and hydrodynamic coefficients. To see the effects of hull and mooring/riser coupling and mooring/riser damping more clearly, the case with no drag forces on those slender members is also investigated. The numerical results are compared with MARIN's wave basin experiments.  相似文献   


2.
A time-domain analysis is used to predict wave loading and motion responses for a ship traveling at a constant speed in regular oblique waves. Considered as a distribution of normal velocities on the wetted hull surface, the combined diffraction and radiation perturbations caused by the forward moving ship and her motions are determined simultaneously. This way, the ship-hull boundary condition is exactly fulfilled. The 3-D time domain Green's function is used to express the combined diffraction/radiation potential in terms of impulsive and memory potentials. Application of the Bernoulli equation yields the pressure distribution and accordingly, the necessary hydrodynamic forces. The equations of motion of the ship are then developed and solved in the time domain.Forces and motions at forward speed are predicted for a Wigley ship-hull in head waves and for a catamaran-ferry in oblique waves. Comparison is made with published theoretical and experimental results for the Wigley ship-hull, and the agreement is good. For the catamaran, a self-propelled model is built and tested both in a large towing tank and in a seakeeping basin in order to measure the six-degrees-of-freedom forces, moments and motions at forward speed in regular waves of different directions. For the longitudinal motions, the agreement between measurements and predictions is generally good. For the transverse motions, however, acceptable discrepancy exists. The discrepancy is thought to be mainly due to the exclusion from the analysis of the rudder forces and viscous damping. The inclusion of such nonlinear effects in the time domain simulation involves complex analysis and this problem is left to a future research.  相似文献   

3.
This paper presents a procedure to calculate the design pressure distributions on the hull of a wave energy converter (WEC). Design pressures are the maximum pressure values that the device is expected to experience during its operational life time. The procedure is applied to the prototype under development by Martifer Energy (FLOW—Future Life in Ocean Waves).A boundary integral method is used to solve the hydrodynamic problem. The hydrodynamic pressures are combined with the hydrostatic ones and the internal pressures of the large ballast tanks. The first step consists of validating the numerical results of motions by comparison with measured experimental data obtained with a scaled model of the WEC. The numerical model is tuned by adjusting the damping of the device rotational motions and the equivalent damping and stiffness of the power take-off system. The pressure distributions are calculated for all irregular sea states representative of the Portuguese Pilot Zone where the prototype will be installed and a long term distribution method is used to calculate the expected maximum pressures on the hull corresponding to the 100-year return period.  相似文献   

4.
The paper presents a comparison between experimental data and numerical results of the hydrodynamic coefficients and also of the wave induced motions and loads on a fast monohull model. The model with 4.52 m length was constructed in Fibre Reinforced Plastic (FRP), and made up of 4 segments connected by a backbone in order to measure sectional loads. The objective of the investigation was to assess the capability of a nonlinear time domain strip method to represent the nonlinear and also the forward speed effects on a displacement high speed vessel advancing in large amplitude waves. With this objective in mind the experimental program included forced oscillation tests in heaving and pitching, for a range of periods, three different amplitudes and several speeds of advance. In head regular waves comprehensive ranges of wave periods, wave steepness and speeds, were tested in order to measure heave, pitch and loads in three cross sections.

The numerical method assumes that the radiation and diffraction hydrodynamic forces are linear and the nonlinear contributions arise from the hydrostatics and Froude–Krilov forces and the effects of green water on deck. The assumption of linearity of the radiation forces is validated by comparing calculated hydrodynamic coefficients with experimental data for three different amplitudes of the forced oscillations. Both global coefficients and sectional coefficients are compared. The motions and loads in waves are compared in terms of first and higher harmonic amplitudes and also in terms of sagging and hogging peaks.  相似文献   


5.
The purpose of this paper is to validate a new method that can be used by offshore platform designers to estimate the added mass and hydrodynamic damping coefficients of potential Tension Leg Platform hull configurations. These coefficients are critical to the determination of the platform response particularly to high frequency motions in heave caused by sum-frequency wave forcing i.e. “springing”. Previous research has developed the means by which offshore platform designers can extrapolate anticipated full-scale hydrodynamic coefficients based on the response of individual model scale component shapes. The work presented here further evaluates the component scaling laws for a single vertical cylinder and quantifies the effects due to hydrodynamic interaction. Hydrodynamic interaction effects are established through a direct comparison between the superposition of individual hull component coefficients and those evaluated directly from complete hull configuration models. The basis of this comparison is established by the experimental evaluation of the hydrodynamic coefficients for individual hull components as well as partial and complete platform models. The results indicate that hydrodynamic interaction effects between components are small in heave, and validate component scaling and superposition as an effective means for added mass and damping coefficient estimation of prototype platforms. It is found that the dependency of damping ratio with KC for a TLP is almost identical to that of a single column, thus offering a scaling methodology for prototype damping ratio values.  相似文献   

6.
The effects of LNG-tank sloshing on the global motions of LNG carriers   总被引:1,自引:0,他引:1  
The coupling and interactions between ship motion and inner-tank sloshing are investigated by a time-domain simulation scheme. For the time-domain simulation, the hydrodynamic coefficients and wave forces are obtained by a potential-thoery-based three-dimensional (3D) diffraction/radiation panel program in frequency domain. Then, the corresponding simulations of motions in time domain are carried out using convolution integral. The liquid sloshing in a tank is simulated in time domain by a Navier–Stokes solver. A finite difference method with SURF scheme is applied for the direct simulation of liquid sloshing. The computed sloshing force and moment are then applied as external excitations to the ship motion. The calculated ship motion is in turn inputted as the excitation for liquid sloshing, which is repeated for the ensuing time steps. For comparison, we independently developed a coupling scheme in the frequency domain using a sloshing code based on the linear potential theory. The hydrodynamic coefficients of the inner tanks are also obtained by a 3D panel program. The developed schemes are applied to a barge-type FPSO hull equipped with two partially filled tanks. The time-domain simulation results show similar trend when compared with MARIN's experimental results. The most pronounced coupling effects are the shift or split of peak-motion frequencies. It is also found that the pattern of coupling effects between vessel motion and liquid sloshing appreciably changes with filling level. The independent frequency-domain coupled analysis also shows the observed phenomena.  相似文献   

7.
When two vessels are moored side-by-side with a narrow gap between them, intense free surface motions may be excited in the gap as a result of complex hydrodynamic interactions. These influence the motions of the two vessels, and the forces in any moorings. The present paper uses first and second order wave diffraction analysis to investigate this phenomenon. Key theoretical aspects of the numerical analysis are first summarised, including the vital need to suppress “irregular frequency” effects; and results are given to validate the code used. The case of a tanker alongside a large floating FLNG barge is then considered in detail.  相似文献   

8.
High speed planing hulls have complex hydrodynamic behaviors. The trim angle and drafts are very sensitive to speed and location of the center of gravity. Therefore, motion simulation for such vessels needs a strong coupling between rigid body motions and hydrodynamic analysis. In addition, free surface should be predicted with good accuracy for each time step. In this paper, velocity and pressure fields are coupled by use of the fractional step method. On the basis of integration of the two-phase viscous flow induced stresses over the hull, acting loads (forces and moments) are calculated. With the strategy of boundary-fitted body-attached mesh and calculation of 6-DoF motions in each time step, time history of ship motions including displacements, speeds and accelerations are evaluated. For the demonstration of the software capabilities, circular cylinder slamming is simulated as a simple type of water slamming. Then, a high-speed planing catamaran is investigated in the case of steady forward motion. All of the results are in good concordance with experimental data. The present method can be widely implemented in design as well as in performance prediction of high-speed vessels.  相似文献   

9.
The dynamically coupled interaction between the hull of a floating platform and its risers and tendons plays an important role in the global motions of the platform and the tension loads in the tendons and risers. This is an especially critical design issue in the frequency ranges outside the wave frequencies of significant energy content. This study examines the importance of this coupled dynamic interaction and the effectiveness of different approaches for their prediction. A numerical code, named COUPLE, has been developed for computing the motions and tensions pertaining to a moored floating structure positioned and restrained by its mooring/tendon and riser systems. In this study the experimentally measured motions of a mini-TLP are compared with those computed using COUPLE and alternative predictions based upon quasi-static analysis. The comparisons confirm that COUPLE is able to predict the dynamic interaction between the hull and its tendon and riser systems while the related quasi-static analysis fails. The comparisons also show that wave loads on the mini-TLP can be accurately predicted using the Morison equation provided that the wavelength of incident waves is much longer than the diameters of the columns and pontoons and that the wave kinematics used are sufficiently accurate. Although these findings are based upon the case of a mini-TLP, they are expected to be relevant to a wide range of floating or compliant deepwater structures.  相似文献   

10.
Time-domain computations of 3D ship motions with forward speed are presented in this paper. The method of computation is based upon transient Green function. Both linear and nonlinear (large-amplitude) computations are performed where the included nonlinearities are those arising from the incident wave, but the diffraction and radiation forces are otherwise retained as linear. The incident wave can be described by any explicit nonlinear model. Computations over a variety of wave and speed parameters establish the robustness of the algorithm, which include high speed and following waves. Comparison of linear and nonlinear computations show that nonlinearities have a considerable influence on the results, particularly in predicting the instantaneous location of the hull in relation to the wave, which is crucial in determining forefoot emergence and deck wetness.  相似文献   

11.
计入前进速度流动与非定常流动之间的干扰,修正了切片法中计算压力的公式,从而建立了计算波浪荷载的方法,开发了相应的计算机程序。计算实例同国内外有关资料的比较表明结果吻合良好,为船舶与海洋结构物结构有限元分析程序提供了有效的前处理模块  相似文献   

12.
An underwater vehicle typically has various appendages such as sail, rudders and hydroplanes. These appendages affect the hull hydrodynamic characteristics, including the resistance components and the form of the generated wave due to the motion of the vehicle near the free surface. The effect of the appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface is studied. Initially the DARPPA SUBOFF submarine without the appendages is selected and hydrodynamic characteristics, including the friction resistance, viscous pressure resistance, wave resistance and shape of the created wave on the free surface are calculated for Froude numbers in the range of 0.128–0.84 and non-dimensional submergence depths 1.3, 2.2, 3.3 & 4.4. Then, by adding the appendages and comparing these two conditions, the effect of appendages is obtained. The results of computations indicate that the appendages cause a mean increase of about 16% in the total resistance. This increment is due to viscosity of fluid and also the interaction of the main hull with the appendages. There are no significant changes in the wave pattern and wave making resistance due to the presence of appendages.  相似文献   

13.
Large volume semi-submersible units may present significant wave induced resonant motions in heave, roll and pitch. Evaluating the slow motions of such systems is important from the initial stages of their designs and therefore requires a model that is both accurate and expedite enough. In the present article, different options for modeling the second-order hydrodynamic forces and induced motions are discussed using as a case-study the PETROBRAS 52 unit—P-52. Computations of the low frequency forces are performed in the frequency domain by means of a commercial Boundary Element Method (BEM) code. Different hydrodynamic approximations are tested and evaluated by directly comparing the predicted responses with those measured in small-scale tests performed in a wave-basin. From the results obtained in theses comparisons, a methodology based on a white-noise approach of the force spectrum is proposed. The validity of such approximation is attributable to the typically low damping levels in heave, roll and pitch motions. Furthermore, results also indicate that the second order forces may be calculated disregarding the free-surface forcing components, an option that helps to reduce the computational burden even more, rendering the procedure suitable for preliminary design calculations.  相似文献   

14.
This paper presents a potential-based boundary element method for solving a nonlinear free-surface flow problem for a Wigley catamaran moving with a uniform speed in deep water. Since the interior flow of each monohull of the catamaran is different from the exterior flow, both monohulls must be considered as lifting bodies. The pressure Kutta condition is imposed at the trailing-edge of the lifting body by determining the dipole distribution, which generates required circulation on the lifting part. The effects of wave interference and hull separation on the hydrodynamic characteristics of the catamaran hull are analyzed and the validity of the computer scheme is examined by comparing the wave resistance with the numerical results of others. The present method could be a useful design tool for screening the suitable combinations of hull parameters and hull spacing at the preliminary design stage of catamaran hull.  相似文献   

15.
A full time-domain analysis program is developed for the coupled dynamic analysis of offshore structures. For the hydrodynamic loads, a time domain second order method is developed. In this approach, Taylor series expansions are applied to the body surface and free-surface boundary conditions, and the Stokes perturbation procedure is then used to establish the corresponding boundary value problems with time-independent boundaries. A higher-order boundary element method (HOBEM) is developed to calculate the velocity potential of the resulting flow field at each time step. The free-surface boundary condition is satisfied to the second order by fourth order Adams–Bashforth–Moultn method. An artificial damping layer is adopted on the free surface to avoid the wave reflection. The mooring-line/tendon/riser dynamics are based on the rod theory and the finite element method (FEM), with the governing equations described in a global coordinate system. In the coupled dynamic analysis, the motion equation for the hull and dynamic equations for mooring-lines/tendons/risers are solved simultaneously using the Newmark method. The coupled analysis program is applied for a truss Spar motion response simulation. Numerical results including motions and tensions at the top of mooring-lines/risers are presented, and some significant conclusions are derived.  相似文献   

16.
The hydrodynamic functioning of an oscillating water column (OWC) in the presence of an underwater tri-dimensional mound (UTDM) through large-scale ocean engineering basin experiments is described. Experiments are carried out with both regular and irregular waves and are compared to numerical models. The analysis is based on the measurements of the wave amplification in the water column for the OWC performance and on surface deformation upwave and over the UTDM for the wave transformation due to both UTDM and OWC. A significant increase of the capture-width ratio due to wave focusing above the mound is observed experimentally. This wave focusing is also well described numerically with a refraction–diffraction model. The wave amplification in the water column for both regular and irregular waves is compared to results from a linear potential model based on an integral matching method. Linear behaviour of the hydrodynamic response of the device is verified for both open and partially closed conditions, in particular for irregular waves.  相似文献   

17.
In the paper, a hydrodynamic model including the characteristics of maneuvering and seakeeping is developed to simulate the six-degree of freedom motions of the underwater vehicle steering near the sea surface. The corresponding wave exciting forces on the underwater vehicle moving in waves are calculated by the strip theory, which is based on the source distribution method. With the hydrodynamic coefficients relevant to the maneuvering and seakeeping, the fourth-order Runge–Kutta numerical method is adopted to solve the equations of motions and six-degrees of freedom of the motions for the underwater vehicle steering near the free surface can be obtained. The wave effect on the corresponding motions of the underwater vehicle is investigated and some interesting phenomena with respect to different wave frequencies and headings are observed. The hydrodynamic numerical model developed here can be served as a valuable tool for analyzing the ascending and descending behaviors of the underwater vehicle near the sea surface.  相似文献   

18.
A general formulation is given of the hydrodynamic forces on a ship, oscillating about a state of rest in 6df in response to excitation by a harmonic wave in shallow water. A method is described to obtain a numerical approximation of the velocity potential, describing the flow around the moving ship by means of a distribution of discrete three-dimensional sources.With this method it is possible to take the influence of a quay into account.Calculated values of wave excited forces, hydrodynamic coefficients and motions of a 200,000 tdw tanker in shallow water are presented and compared with experimental results.  相似文献   

19.
《Applied Ocean Research》2005,27(4-5):224-234
The modified scaled boundary finite-element method (SBFEM), keeping the advantages of the original SBFEM, eliminates the restriction of the scaling center location so that this approach can solve two-dimensional problems with parallel side-faces. In this paper, the modified SBFEM is applied to solutions of two types of problems—wave diffraction by a single and twin surface rectangular obstacles and wave radiation induced by an oscillating mono-hull and twin-hull structures in a finite depth of water. For wave diffraction problems, numerical results agree extremely well with the analytic solution for the single obstacle case and other numerical results of a different approach for the twin obstacle case. For wave radiation problems, the particular solutions to the scaled boundary finite-element equation are presented for cases of heave, sway and roll motions. The added mass and damping coefficients for heave, sway and roll motions of a two-dimensional rectangular container are computed and the numerical results are compared with those from independent analytical solution and numerical solution using the boundary element method (BEM). It is found that the SBFEM method achieves equivalent accuracy to the conventional BEM with only a few degrees of freedom. In the last example, wave radiation by a two-dimensional twin-hull structure is analyzed. Comparisons of the results with those obtained using conventional Green's function method (GFM) demonstrate that the method presented in this paper is free from the irregular frequency problems.  相似文献   

20.
The analytical method developed by Svendsen (1968) for a forced heave motion is extended to the general problem of wave induced heave, roll and sway motions of a long ship at a depth of water which is only slightly larger than the draught of the ship. This corresponds, for example, to the situation of a fully loaded ship in a harbour area.After linearization of the problem, the water motion is considered for each of the three individual motions and for the wave reflection-transmission problem for a fixed ship. The ensuing results for the forces on the ship are then synthesized to form the equations of motion, which are presented with all coefficients given, including mooring forces.Analytical and numerical results are given for the three components of motion, for the associated resonance frequencies, and for the hydrodynamic masses and moments of inertia. Finally, the assumptions used are analyzed and evaluated by comparison with measurements and with other results for a special case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号