首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

2.
The particular objective of the present work is the development of a new radiocarbon correction approach accounting for palaeoclimate conditions at recharge and hydrochemical evolution. Relevant climate conditions at recharge are atmospheric pCO2 and infiltration temperatures, influencing C isotope concentrations in recharge waters. The new method is applied to the Ledo-Paniselian Aquifer in Belgium. This is a typical freshening aquifer where recharge takes place through the semi-confining cover of the Bartonian Clay. Besides cation exchange which is the major influencing process for the evolution of groundwater chemistry (particularly in the Bartonian Clay), also mixing with the original porewater solution (fossil seawater) occurs in the aquifer. Recharge temperatures were based on noble gas measurements. Potential infiltration water compositions, for a range of possible pCO2, temperature and calcite dissolution system conditions, were calculated by means of PHREEQC. Then the sampled groundwaters were modelled starting from these infiltration waters, using the computer code NETPATH and considering a wide range of geochemical processes. Fitting models were selected on the basis of correspondence of calculated δ13C with measured δ13C. The 14C modelling resulted in residence times ranging from Holocene to Pleistocene (few hundred years to over 40 ka) and yielded consistent results within the uncertainty estimation. Comparison was made with the δ13C and Fontes and Garnier correction models, that do not take climate conditions at recharge into account. To date these are considered as the most representative process-oriented existing models, yet differences in calculated residence times of mostly several thousands of years (up to 19 ka) are revealed with the newly calculated ages being mostly (though not always) younger. Not accounting for climate conditions at recharge (pCO2 and temperature) is thus producing substantial error on deduced residence times. The derived 14C model ages are correlated with He concentrations measured in the groundwater of the aquifer. The obtained residence times show a gap between about 14 and 21 ka indicating possible permafrost conditions which inhibited any groundwater recharge.  相似文献   

3.
Major element concentrations, stable (δ18O and δ2H) and radiogenic (3H, 14C) isotopes determined in groundwater provided useful initial tracers for understanding the processes that control groundwater mineralization and identifying recharge sources in semi-arid Cherichira basin (central Tunisia).Chemical data based on the chemistry of several major ions has revealed that the main sources of salinity in the groundwaters are related to the water–rock interaction such as the dissolution of evaporitic and carbonate minerals and some reactions with silicate and feldspar minerals.The stable isotope compositions provide evidence that groundwaters are derived from recent recharge. The δ18O and δ2H relationships implied rapid infiltration during recharge to both the Oligocene and Quaternary aquifers, with only limited evaporation occurring in the Quaternary aquifer.Chemical and isotopic signatures of the reservoir waters show large seasonal evolution and differ clearly from those of groundwaters.Tritium data support the existence of recent recharge in Quaternary groundwaters. But, the low tritium values in Oligocene groundwaters are justified by the existence of clay lenses which limit the infiltration of meteoric water in the unsaturated zone and prolong the groundwater residence time.Carbon-14 activities confirm that groundwaters are recharged from the surface runoff coming from precipitation.  相似文献   

4.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

5.
《Applied Geochemistry》1999,14(7):873-892
The hydrochemical response of fracture zones to enhanced recharge into the upper bedrock environment has been studied during a 3 a project at the Äspö Hard Rock Laboratory (HRL) in Southeastern Sweden. Hydrochemical data obtained during the experiment provides a basis for development of a model for the impact of accelerated recharge on groundwater composition and reactive processes during repository construction and operation. Tunnel construction at the HRL resulted in a 50-fold increase in recharge rates, and a 30-fold decrease in groundwater residence times in the fracture zone studied. Up to 80% dilution of the native groundwater created the greatest impact on groundwater composition. In addition, comparison of mass balances for solutes with known conservative behaviour, and reactive solutes, indicates a significant source of HCO3, SO2−4 and Na+ ions and a significant sink for Ca2+ ions within the fracture zone. These trends are explained by ion-exchange processes and microbial degradation of organic C transported from the soil with recharge. The increased microbial activity helps maintain anoxic conditions within the fracture zone. The enhanced recharge favours the performance of the geological barrier since anoxic conditions help to protect against corrosion of engineered barriers, and because long-lived isotopes of Np, Tc and U are less soluble under reducing conditions. A secondary impact is the strong dilution which affects trace element speciation, and also the stability and possible transport of colloids, through ion strength effects. Results from this experiment are primarily significant for national radioactive waste disposal programs that consider potential repository sites in granite geology, and for other programs considering disposal in fractured rock.  相似文献   

6.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

7.
In most countries of the world, groundwater and surface water are at a serious risk of pollution due to chemicals used in agricultural activities. The present study examined whether such a risk exists in Eskipazar, Turkey and the surrounding area, which covers a surface area of 696 km2. Nitrate pollution (NO3) was observed in waters discharging from the Örencik Formation, consisting of loose conglomerate, sandstone, mudstone, siltstone, and claystone levels; from the Yörük member of the Örencik Formation consisting of limestone, from areas where the Örencik Formation and Yörük member are located together, and from alluvium. Agricultural is practiced in these areas, and the waters discharging from these formations are used as drinking water and for domestic purposes. In particular, periodically varying levels of pollutants, such as B, Pb, Hg, Se were detected in wells drilled in Örencik Formation featuring a high NO3 concentration. The concentrations of S, Cr, Mn, Fe, Cu, Zn, Ga, Br, Sr, Y, I, Ba, and U in these waters are also slightly higher than other cold waters in the study area. In addition to the NO3 pollution, high levels of Ca and SO4 pollution was observed at a well drilled in alluvium. In addition, some trace element concentrations identified in the wells drilled in the Örencik Formation were higher than the average values at geothermal and/or mineral springs in the study area. The study area has an adequate sewage system and has no sources of pollution, such as mineralization, industrial center, waste disposal area, etc. Therefore, it is believed that the main causes of NO3 and trace element pollution are fertilizers and pesticides used in agricultural activities. Water–rock interaction, usage period of fertilizers and pesticides, amount of precipitation, groundwater level, usage of elements by plants, mobility of elements, pH value of the environment, redox potential, adsorption/desorption, biochemical processes, etc. are thought to be the causes of the periodical variation of some trace element concentrations observed in these waters.  相似文献   

8.
The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3?>?50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity.  相似文献   

9.
River water infiltration into an unconfined porous aquifer (∼73% gravels, ∼12% sands, ∼15% silts and clays) in the Petrignano d’Assisi plain, central Italy, was traced combining isotopic techniques (222Rn) with hydrochemical and hydrogeologic techniques in order to characterize the system under study. The 222Rn gave information about the river water residence times within the aquifer and hydrochemical data, in a two-component mixing model, which allowed estimating the extent of mixing between surface waters and groundwater in wells at increasing distances from the river. The mixing measured in the well closer to the riverbank indicated a higher contribution of river water (up to 99%) during the groundwater recession phase and a moderate contribution (up to 64%) during the recharge phase. A model describing 222Rn concentrations in groundwater as the result of both parent/daughter nuclide equilibrium and mixing process (222Rn mixing/saturation model) was used to describe observed Rn concentrations and mixing index trends with the aim of evaluating water mean infiltration velocities along the transect. The stream bank infiltration velocities obtained by the model ranged from 1 m day−1 during groundwater recharge periods, when river water infiltration is lower, to 39 m day−1 during recession phases, when river water infiltration is larger.  相似文献   

10.
A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Eocene limestone aquifer. The aquifer locally is composed of chalky limestone with thin clay intercalated (Samalut Fm.), the fissures, the joints, and the fractures are represented the conduits of the aquifer system. The flow patterns are conditioned by karstification processes which develop a conduit network and preserve low permeability microfractured blocks. The aquifer is mainly recharged by surrounding aquifers and agricultural wastewaters. The groundwater flows in the eastern part (due the Bahr Yossef and River Nile), which is a discharge area rather than a recharge. Twenty-eight groundwater samples was collected from the Eocene limestone aquifer and analyzed for isotopes, major, and trace elements. δD and δ18O concentrations ranged widely due to geology, infiltration of different surface waters, evaporation, and hydrogeology. The concentration of δD and δ18O isotopes is depleted in the northern zone of the northern part and western zone of the central and southern part of the study area. They are enriched due the eastern area of the central and southern part of the study area. δD vs. δ18O delineate the Pleistocene aquifer and has a strong influence than other waters on aquifer hydrogeochemistry. It is confirmed by the AquaChem outputs of the mixing proportions of different water types included in the aquifer system. Cl-δD and Cl-δ18O relationships indicate the role of evaporation especially due the eastern area of the central and southern part of the study area. This research tests the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode clustering, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. Nearly most low-salinity waters are in equilibrium to supersaturate with respect to both carbonate minerals, while it is shifted to undersaturate with salinity. The inverse modeling findings clarify that the calcite, gypsum, and anhydrite dissolution increased due the northeastern area, middle zone, and southern corner of the northern, central, and southern part of the study area, respectively. The latter areas also were characterized by the lowest precipitation of the dolomite. Such areas are distinguished by much more enhancement for aquifer permeability and therefore transmissivity. The latter areas can be use as injection zone by fresh water. It can be a triple function; firstly, it recharges the saline Eocene limestone aquifer through the enhancement hydraulic conductivity and dilutes it. Secondly, it enhances much more the aquifer permeability and therefore the transmissivity. The Eocene limestone aquifer can be improved in quality and quantity by using such a model and exploits it as an alternative water resource with Quaternary aquifer and Nile water. Thirdly, it irrigates more areas to increase the income/capita. The dedolomitization represents the main hydrogeochemical process in the aquifer system. The geomedia (limestone, clay, marl, shale, and sand deposits) are in contact with water, therefore, the rock/water interaction, mixing, and ion exchange were estimated by the geochemical evolution of the groundwater systems.  相似文献   

11.
GIS for the assessment of the groundwater recharge potential zone   总被引:4,自引:0,他引:4  
Water resources in Taiwan are unevenly distributed in spatial and temporal domains. Effectively utilizing the water resources is an imperative task due to climate change. At present, groundwater contributes 34% of the total annual water supply and is an important fresh water resource. However, over-exploitation has decreased groundwater availability and has led to land subsidence. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the geographical information system (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. The resultant map of the groundwater potential zone demonstrates that the highest recharge potential area is located towards the downstream regions in the basin because of the high infiltration rates caused by gravelly sand and agricultural land use in these regions. In contrast, the least effective recharge potential area is in upstream regions due to the low infiltration of limestone.  相似文献   

12.
Al-Mazraa is a heavily populated suburb of Damascus (Syria) with agricultural activity. It is adjacent to the Cretaceous Qassioun Mountain Range, from which it is structurally separated by the Damascus fault. Al-Mazraa waterworks abstracts from a shallow Quaternary aquifer, whose recharge processes are unidentified. The functions of Qassioun Mountain, the Damascus fault, the agricultural activities, the ascending deeper groundwater, and the through-flowing Tora River are not well understood and they are, hence, subject to study. The application of hydrochemical parameters and ratios in combination with signatures of δD and δ18O revealed that recharge predominantly occurs in the outcropping Cretaceous rocks through subsurface passages rather than through influent conditions of the Tora River or through direct rainfall. Interestingly, high Na/Cl ratios indicate contact with volcanic rocks which exist within the Cretaceous anticline and also in the subsurface of the studied Quaternary aquifer. Evidence for deeper circulating groundwater is given, since replenishing waters are up to 4 °C warmer and have much lower nitrate concentrations than the groundwater in the study area. From these points, it is indicated that the Damascus fault is conductive in respect to groundwater, rather than being impermeable, as it is elsewhere.  相似文献   

13.
西北某放射性废物处置场预选区,区域地下水系统包含多级独立第四系储水洼地,洼地出口以泉水排泄地下水,继而回渗补给下级洼地。根据含水层底板起伏特征,利用GMS模拟软件中的排水沟模块与溪流模块概化了泉水,通过泉流量校准与监测孔水位拟合,校正了研究区渗透系数、给水度、和储水率等水文地质参数,计算了地下水流速、流向以及地下水资源量。结果显示,研究区地下水由南向北东径流,东北部为最终排泄洼地,地下水流速缓慢,水资源相对匮乏,有利于放射性废物处置的安全。  相似文献   

14.
Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr?1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.  相似文献   

15.
Rock water interactions play an important role in the flow of groundwater. Groundwater samples were collected from deep production wells with depths ranging from 120 to 230 m. Complete chemical analysis of 40 groundwater samples was collected from the fractured limestone aquifer including major cations (Na+, K+, Ca2+, Mg2+) and major anions (Cl?, SO4 2?, HCO3 ?, CO3 2?). A geochemical modeling (NETPATH Software) was applied for environmental simulate net geochemical mass-balance reactions between initial and final waters along a hydrologic flow path. This program simulates selected evolutionary waters for every possible combination of the plausible phases that account for the composition of a selected set of chemical constraints in the system. The groundwater of the Eocene aquifer mainly belongs to fairly fresh water with salinity contents ranging from 228 to 3595 ppm. The measured groundwater levels range between 8 and 25 m near the river Nile to the limestone plateau (eastwards). Consequently, groundwater flows from east to westward toward the river Nile. Groundwater aquifer in the study area is mainly composed of fractured limestone; the saturated states of the PCO2, calcite, aragonite, dolomite, siderite, gypsum, anhydrite, hematite, and goethite in addition to H2 gas were estimated. The undersaturated state of carbon dioxide reflects closed conditions and very low probability of recent recharge, and it reveals also the high tendency of water to precipitates carbonate species. Undersaturation by carbonate minerals is only restricted to some pockets distributed on the different places of the aquifer in the study area. The majority of groundwater samples of Eocene aquifer in the study area indicated that groundwater is not suitable for irrigation with treatment and requires good drainage.  相似文献   

16.

Within the Ararat Valley (Armenia), a continuously growing water demand (for irrigation and fish farming) and a simultaneous decline in groundwater recharge (due to climate change) result in increasing stress on the local groundwater resources. This detrimental development is reflected by groundwater-level drops and an associated reduction of the area with artesian conditions in the valley centre. This situation calls for increasing efforts aimed at more sustainable water resources management. The aim of this baseline study was the collection of data that allows for study on the origin and age distribution of the Ararat Valley groundwater based on environmental tracers, namely stable (δ2H, δ18O) and radioactive (35S, 3H) isotopes, as well as physical-chemical indicators. The results show that the Ararat Valley receives modern recharge, despite its (semi-)arid climate. While subannual groundwater residence times could be disproved (35S), the detected 3H pattern suggests groundwater ages of several decades, with the oldest waters being recharged around 60 years ago. The differing groundwater ages are reflected by varying scatter of stable isotope and hydrochemical signatures. The presence of young groundwater (i.e., younger that the 1970s), some containing nitrate, indicates groundwater vulnerability and underscores the importance of increased efforts to achieve sustainable management of this natural resource. Since stable isotope signatures indicate the recharge areas to be located in the mountains surrounding the valley, these efforts must not be limited to the central part of the valley where most of the abstraction wells are located.

  相似文献   

17.
The functioning of karst systems in the Tlemcen Mountains, Algeria, was studied using environmental isotopic and chemical parameters. The weakly enriched values of 18O suggest a fast infiltration of water through the karst systems. The deuterium (2H) excess in groundwater and tritium (3H) in precipitation show that the region is subjected to Mediterranean and Atlantic influences with a predominance of the former. The isotopic gradient, in combination with topographic and geologic criteria, allows the recharge areas of the main karst systems to be estimated. The results of 13C, 14C and 3H analysis show that the majority of present waters come from perched systems and mixture waters influenced by three clusters (“ante-thermonuclear” waters, “thermonuclear” waters, and present waters) that generally emerge from semi-confined systems. The oldest waters are relatively rare and are stored in deeply confined systems. These results are consistent with the hydrochemical and the hydrogeological findings. The results have important implications in groundwater protection.  相似文献   

18.
The Najd, Oman, is located in one of the most arid environments in the world. The groundwater in this region is occurring in four different aquifers A to D of the Hadhramaut Group consisting mainly of different types of limestone and dolomite. The quality of the groundwater is dominated by the major ions sodium, calcium, magnesium, sulphate, and chloride, but the hydrochemical character is varying among the four aquifers. Mineralization within the separate aquifers increases along the groundwater flow direction from south to north-northeast up to high saline sodium-chloride water in aquifer D in the northeast area of the Najd. Environmental isotope analyses of hydrogen and oxygen were conducted to monitor the groundwater dynamics and to evaluate the recharge conditions of groundwater into the Najd aquifers. Results suggest an earlier recharge into these aquifers as well as ongoing recharge takes place in the region down to present day. Mixing of modern and submodern waters was detected by water isotopes in aquifer D in the mountain chain (Jabal) area and along the northern side of the mountain range. In addition, δ2H and δ18O variations suggest that aquifers A, B, and C are assumed to be connected by faults and fractures, and interaction between the aquifers may occur. Low tritium concentrations support the mixing assumption in the recharge area. The knowledge about the groundwater development is an important factor for the sustainable use of water resources in the Dhofar region.  相似文献   

19.
To explore the causes of the ecological environment deterioration of lakes in the Inner Mongolia Plateau, this study took a typical inland lake Daihai as an example, and investigated the groundwater recharge in the process of lake shrinkage and eutrophication. Using the radon isotope (222Rn) as the main means of investigation, the 222Rn mass balance equation was established to evaluate the groundwater recharge in Daihai. The spatial variability of 222Rn activity in lake water and groundwater, the contribution of groundwater recharge to lake water balance and its effect on nitrogen and phosphorus pollution in lake water were discussed. The analysis showed that, mainly controlled by the fault structure, the activity of 222Rn in groundwater north and south of Daihai is higher than that in the east and west, and the difference in lithology and hydraulic gradient may also be the influencing factors of this phenomenon. The 222Rn activity of the middle and southeast of the underlying lake is greater, indicating that the 222Rn flux of groundwater inflow is higher, and the runoff intensity is greater, which is the main groundwater recharge area for the lake. The estimated groundwater recharge in 2021 was 3 017×104 m3, which was 57% of the total recharge to the lake, or 1.6 times and 8.1 times that of precipitation and surface runoff. The TN and TP contents in Daihai have been rising continuously, and the average TN and TP concentrations in the lake water in 2021 were 4.21 mg·L?1 and 0.12 mg·L?1, respectively. The TN and TP contents entering the lake with groundwater recharge were 6.8 times and 8.7 times above those of runoff, accounting for 87% and 90% of the total input, respectively. The calculation results showed that groundwater is not only the main source of recharge for Daihai, but also the main source of exogenous nutrients. In recent years, the pressurized exploitation of groundwater in the basin is beneficial in increasing the groundwater recharge to the lake, reducing the water balance difference of the lake, and slowing down the shrinking degree of the lake surface. However, under the action of high evaporation, nitrogen and phosphorus brought by groundwater recharge would become more concentrated in the lake, leading to a continuous increase in the content of nutrients and degree of eutrophication. Therefore, the impact of changes in regional groundwater quantity and quality on Daihai is an important issue that needs further assessment.  相似文献   

20.
Detailed hydrogeochemical and isotopic data of groundwaters from the Hammamet–Nabeul unconfined aquifer are used to provide a better understanding of the natural and anthropogenic processes that control the groundwater mineralization as well as the sources of different groundwater bodies. It has been demonstrated that groundwaters, which show Na–Cl and Ca–SO4–Cl water facies, are mainly influenced by the dissolution of evaporates, the dedolomitization and the cation-exchange process; and supplementary by anthropogenic process in relation with return flow of irrigation waters. The isotopic signatures permit to classify the studied groundwaters into two different groups. Non-evaporated groundwaters that are characterized by depleted δ 18O and δ 2H contents highlighting the importance of modern recharge at higher altitude. Evaporated groundwaters with enriched contents reflecting the significance infiltration of return flow irrigation waters. Tritium data in the studied groundwaters lend support to the existence of pre-1950 and post-1960 recharge. Carbon-14 activities in shallow wells that provide evidence to the large contamination by organic 14C corroborate the recent origin of the groundwaters in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号