首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Sedimentation rates were determined with the 210Pb method in eight sediment cores from Lake Constance. The rate of deposition in the main basin (Obersee) varies from about 0.06 g cm?2 y?1 in the central part to 0.13 g cm?2 y?1 in the eastern part of the lake and then increases rapidly towards the Rhine delta. In the central lake area the rate of deposition has been approximately constant since 1900, and dating with the 210Pb method is in good agreement with sedimentological observations. In the Konstanzer Trichter area, the deposition rate has been increasing since about 1955 as a result of eutrophication and subsequent high carbonate production. Dating with 137Cs is fairly accurate for sediments deposited at a high rate, but is questionable for slowly accumulating ones. A positive correlation of 210Pb fluxes and sedimentation rates indicates that 210Pb flux into sediments follows the distribution pattern of solids. 210Pb profiles in four sediment cores interpreted in terms of a constant flux model display synchronous fluctuations of the sedimentation rate; however, their relation to long-range particulate input variations remains to be proved. Sedimentation rates determined with the 210Pb method were used to calculate recent nutrient and heavy metal fluxes. Anthropogenic fluxes of Zn and Pb are in the same range of magnitude as in other polluted areas in Europe and America.  相似文献   

2.
The distribution of 210Pb, 137Cs, and Ambrosia (ragweed) pollen in two sediment cores from Lake Ontario and in three cores from Lake Erie provides independent estimates of sediment accumulation rates. Geochronology with 210Pb is based on radioactive decay of the isotope following burial in sediments. The method can reveal with precision changes in sedimentation occurring over the past 100 yr or so. Geochronologies with 137Cs and Ambrosia are based on the occurrence of a horizon corresponding, respectively, to the onset of nuclear testing 25 yr ago and to regional forest clearance in the middle 1800s. These methods provide estimates of long-term average sediment accumulation rates. In all but one core, the distributions of 137Cs and 210Pb indicate no physical mixing of near-surface sediments. In two cores, including one from central Lake Erie collected by diver, all three estimates of sedimentation rates are in excellent agreement. In two other cores, rates based on 210Pb are significantly higher than those inferred from Ambrosia pollen profiles. Lower average rates appear to result from occasional massive losses of sediments. Such events, apparent in the distribution of 210Pb but not in pollen records, correlate with the occurrence of major storm surges on the lakes during this century. In one core from western Lake Erie, exponential distributions of both 210Pb and Ambrosia appear to be artifacts which may result from extensive biological or physical reworking of sediments in shallow water (11 m). Previous indications of increased sedimentation in Lake Erie since about 1935 based on Castanea (chestnut) pollen data are not substantiated.  相似文献   

3.
Surficial and core samples collected from the eastern Thessaloniki Gulf, located in the NW Aegean Sea, were analyzed for their sedimentation rate and inventories of 137Cs and 210Pb. The study of the spatial radionuclide dispersion in the specific region is essential for the assessment of marine pollution levels. The sedimentation rates were calculated from the vertical distribution of 137Cs and excess 210Pb in the sediment cores. The spatial distribution of 137Cs was studied with respect to sediment characteristics such as the grain size of the sample and the organic carbon content. The activity concentrations were measured by means of gamma ray spectrometry using HPGe detector for 137Cs and gross alpha counting using alpha counter for 210Pb. The average sedimentation rate along the sediment cores is characterized by a consistent pattern and varies from 0.18?±?0.02 to 0.22?±?0.03?cm?year?1. The 137Cs inventories varied from 205?±?15 to 602?±?39?Bq?m?2, while the 210Pb inventories of the studied cores exhibited average value of 140?±?9?Bq?m?2. Elevated 137Cs activities were observed compared to certain Mediterranean marine areas; however, they were lower than the reported values in the Black Sea.  相似文献   

4.
Sediment core segments from Sylvan Lake, Lake Champlain and Lake Canadarago were dated radiometrically with 210Pb and 137Cs. Their respective sedimentation rates were determined to be 0.11, 0.14 and 0.52 g cm?2 yr?1. For the two lakes of lower sedimentation the variations of selected elemental abundances as function of depth were analyzed. Two groupings were found: Al, K, Ti, Rb and Zr were correlated among themselves but reflected different variations in the input of terrigenous erosion material to the lakes. The Cu, Zn and Pb correlated among themselves showed similar depth dependence with increasing concentrations toward the top which can be attributed to cultural pollution. Recent ‘excess’ fluxes to the sediments above the natural contribution by clastic material were derived for the location of the cores, which for Cu, Zn and Pb amounted to 3.8, 24 and 16 μg cm?2 yr?1 respectively for Sylvan Lake and 4.9, 20 and 16 μg cm?2 yr?1 for Lake Champlain. The corresponding 210Pb flux was 3.3 and 2.3 dpm cm?2 yr?1, respectively for the two lakes.Approximate residence times in the water column were obtained for trace metals at the Lake Champlain location. Short residence times estimated for Pb (< 0.15 yr) and Cu (< 0.4 yr) indicate fast removal, whereas those for Zn (1.0 ± 0.3 yr) and Cr (2.0 ± 0.5 yr) appeared to be dominated by the water residence time.  相似文献   

5.
Three cores, one kilometer apart, from each of seven locations along Lake Erie were analyzed for heavy metals and dated by 210Pb techniques. The sedimentary record of anthropogenic inputs of heavy metals parallels the increasing intensity of cultural activity in the lake basin. On the average, pollution sources annually contribute 0.4 μg of Cd, 12 μg of Cu, 12 μg of Pb and 36 μg of Zn deposited per each cm2 of the Eastern Basin sediments: 0.5, 8.8, 11 and 31 μg of Cd, Cu, Pb and Zn, respectively, deposited per cm2 of Western Basin sediments and 0.7, 1.4, 2.0 and 5.6 μg of Cd, Cu, Pb and Zn, respectively, deposited per cm2 of fine-grained sediments in the Central Basin. These anthropogenic flux rates exceed the pre-colonial data by 80–600%. The mean flux rates for 210Pb into the Eastern. Central and Western Basins are 0.45, 0.07 and 0.15dpm cm?2 yr?1. respectively. From an inventory of sources and sinks of the metals, it is shown that about 2500 × 103 kg of Cu. 1900 × 103 kg of Pb and 6750 × 103kg of Zn are delivered annually into the lake. The calculated retention in the lake sediments of 45%, 65% and 35% of the total annual inputs of Cu. Pb and Zn, respectively, agrees closely with the accumulation of data derived from sediment analyses. Sewage discharges, direct and indirect, are shown to be an important source of metal in the lake. The mean residence times in the water column are inferred to be 104 days for Cu. 180 days for Pb and 152 days for Zn.  相似文献   

6.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   

7.
In this paper210 Pb and 137Cs dating methods were used to determine sedimentation rates of lakes Dianchi, Erhai and Poyanghu, and to establish the time scale of the sediments. Also based on geochemical records in the sediment column, the historical variation in heavy metal content over the past one hundred years was determined. Some element concentration increased rapidly after the 1970s, such as Cu, Zn and Mn in the sediments of northern Lake Dianchi, Cd and Mn in southern Lake Erhai and in the west central parts of Lake Poyanghu, Our investigations indicate that the increase in element concentration is caused by human activities. In order to understand the extent of the effect caused by human activities, we have calculated the flux of Zn, Cd and Mn. Results show that the flux caused by human activities is seven times greater than the natural one and the ratio is about 2 times in Lake Erhai and Lake Poyanghu.  相似文献   

8.
To determine radioactivity and trace metal levels, surface sediments were collected from two important areas (?zmir Bay and Didim) in the Aegean Sea region of Turkey, and were analyzed for concentrations of 210Po, 210Pb and trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). The average 210Po and 210Pb massic activities in sediments varied in the range of 24 ± 5 to 126 ± 6 Bq kg?1 dry wt. and 18 ± 3 to 59 ± 4 Bq kg?1 dry wt., respectively. Izmir Bay exhibited the highest polonium activities in sediments, likely due to specific sedimentation processes and other sediment characteristics. The trace metal results showed that the Izmir Bay is facing trace metal pollution. The metal concentrations in sediment samples are low compared to those from the other neighboring marine environments.  相似文献   

9.
The sedimentation rates and diffusive sediment mixing coefficients at several Lake Ontario locations have been derived from measurements of unsupported210Pb profiles in sediment cores. The values of mixing coefficients obtained in the present study are significantly lower than those obtained previously through an analysis of porosity profiles. The present estimates, however, are consistent with the rather well-preserved pollutant profiles at some of these locations. It is observed that the more realistic value of the mixing coefficient, obtained by inclusion of the sedimentation rate parameter, follows the sign opposite to that for the constant obtained by regression analysis of the porosity data. Further work is required to delineate this apparent relationship between two important physical characteristics of deposited sediments.Analysis of available suspended sediment data shows that Niagara River supplies about 1.8 million tonnes of sediment annually to Lake Ontario. This value is significantly lower than that (4.6 mt/yr) used previously in constructing sediment and pollutant budgets for Lake Ontario. From the presently derived sedimentation rate and suspended solid discharge estimates, an average value of 441 km2 (range 220-938 km2) is obtained for the minimum area of Lake Ontario over which the Niagara River-supplied fine sediment is deposited.  相似文献   

10.
This paper describes the use of 210Pb and 137Cs radioactivity measurements to determine the rates of sedimentation in the Great Lakes. Cores from eight locations in Lake Michigan were chosen for examination to cover as wide as possible a range of sedimentation rates and representative sedimentary environments. The surficial 210Pb activity in the sediments varies between 7 and 23 pCi/g dry wt and its profile in each core shows the expected exponential decrease with depth consistent with the assumption of uniform sedimentation rate over the last hundred years and secular equilibrium between supported 210Pb and 226Ra (0.5-1.0 pCi/g dry wt). Companion measurements of 137Cs indicate that the coring technique satisfactorily recovered the uppermost levels of the deposit and that the mobility of both radionuclides within the sediment is probably small.Based on the limited number of cores analyzed to date, it appears that modern sedimentation rates are not very different from average rates for the last 7000 yr. The excess 210Pb appears to originate primarily from atmospheric fallout, but a further inventory of the 210Pb distribution over the lake bottom must be made to properly assess the significance of other sources. The spatial distributions of both 137Cs and 210Pb at certain stations suggest that the mode of transport of these radionuclides are comparable and involve attachment to settling particles. A mathematical model is developed which accounts for the observed limited mobility of both 210Pb and 137Cs in several of the cores in terms of post-depositional redistribution by physical or biological mixing processes.  相似文献   

11.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   

12.
The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (<5 cm), yielding quantifiable results in 13 cores. MARs were developed via analysis of the same radioisotopes in eight long cores (>10 cm). These MARs in the upper 1–2 cm of each long core ranged from 0.019 to 0.105 gsed/cm2/a. Surface sediment Se concentrations in the upper 1 or 2 cm of each long core ranged from 0.79 to 2.47 mg/kg. Representative MARs and Se concentrations were used to develop mean annual Se removal by sedimentation in the corresponding sedimentation region. The spatially integrated Se sedimentation rate was estimated to be 624 kg/a within a range of uncertainty between 285 and 960 kg/a. Comparison to annual Se loading and other potential removal processes suggests burial by sedimentation is not the primary removal process for Se from the GSL.  相似文献   

13.
Two sediment cores (BO90/13b and BO90/17b) from Lake Constance were investigated by-spectrometry for210Pb,134Cs,137Cs,241Am,234Th, and other members of the238U decay chain. The sediments were dated using the constant-flux model for210Pb, and accumulation rates were determined. These range from 0.04 to 0.65g/cm 2/yr (BO90/13b) and 0.04 to 0.8g/cm 2/yr (BO90/17b), respectively. The mean accumulation rate amounts to 0.16g/cm 2/yr for both cores. The cores had already been dated by lamination counting and reconstruction of high-water events at the Limnological Institute at Constance, so that a very precise time scale was available. Both ages derived are in agreement within statistical error up to 1900, which means dating with the constant-flux model for210Pb was confirmed up to that age. The position of the maxima of bomb cesium and americium confirm the stratigraphic and210Pb datings. With241Am a further radioactive isotope is available, which can, due to the half-life of241Pu (t 1/2=14.4yr) be detected now by-spectrometry and can serve as an additional time indicator, the maximum being dated at 1963. By applying the various time scales, the depth profiles of stable lead and zinc of core BO90/13b were dated. Both heavy metals show a very significant maximum located beneath the layer of the maxima of bomb cesium and americium, showing that these maxima are older than those of the bomb isotopes. It is remarkable in this context that the maximum of zinc concentration occurs a little later than that of stable lead. Similar concentration profiles are observable in core BO90/17b and other, older sediment cores (CS6-CS10) on a transect across the lake. In contrast to a former assumption, the depth profile of stable lead in Lake Constance sediments does not reflect the anthropogenic gasoline lead emissions into the atmosphere for Germany, their maximum being dated at 1971.  相似文献   

14.
长江中游网湖沉积物重金属元素变化特征分析   总被引:12,自引:8,他引:4       下载免费PDF全文
在放射性核素137Cs和210Pb精确计年的基础上,建立了长江中游网湖近代沉积物年代序列。通过对沉积物中金属元素含量和粒度的测定,结合相关的文献资料,分析了100多年来网湖沉积物中重金属元素的垂直分布特征、物源变化,以及自然因素和人类活动对其的影响,最后采用地累积指数法和潜在生态危害指数法进行了重金属污染评价。研究结果表明:  20世纪50年代以前,人类活动对重金属元素沉积影响不大,重金属元素含量低于或接近参考的背景值,主要表现为自然沉积。其中1920~1950年间,流域高频率的洪灾使网湖沉积物中粘土物质减少,战乱和血吸虫病造成阳新县工农业生产衰退,人口急剧下降,受此影响沉积物中重金属含量出现了一段低谷。50年代以后,随着人口的增长、经济的速猛发展,尤其是矿产开发和大规模的水利工程建设,流域水土流失加重,大量陆源物质进入湖泊,使Cu,Ti,Mn,Zn,Co,Fe和Pb含量增加。重金属污染评价结果表明:  100多年来网湖总体上污染较轻,主要污染元素为Pb;   Cu和Zn在60年代后出现轻度污染;   Mn在沉积物表层出现轻度污染。目前,网湖RI=40.83,生态风险较小,但作为水生生物的养殖基地,中国重要的湿地保护区,其重金属污染问题应引起有关方面的关注,以防患于未然。  相似文献   

15.
Multiple sediment cores were collected in June 1994 in the turbidity maximum zone of the Hudson River estuary off Manhattan, New York. Results from X-radiography of the sediments and measurements of natural radionuclides (234Th,7Be, and210Pb) and trace metals (Ag, Cd, Cu, Pb, and Zn) show significant spatial variability of sediment composition and structure and patchy distributions of radionuclides activities and trace metal concentrations in this small area (0.6 km × 0.5 km). Radionuclide and trace metal analyses confirm prior work (Olsen et al. 1978; Olsen et al. 1981; Hirschberg et al. 1996) that show the western margin area of the river acts as a repository of these chemical constituents at least for the short-term period (0.5–1 yr), and the mid-channel area is not a depositional area for sediments and associated chemical constituents.7Be profiles reveal short-term sediment deposition rates ranging from 6 cm yr?1 to 26 cm yr?1 in the western margin area. Significant spatial variations in excess234Th and7Be inventories (up to a factor of 10 and 5 for234Th and7Be, respectively) are found in the western margin depositional area, although the inventories are balanced, on average, with in situ production in water column and atmospheric supply. The spatial variation of surficial excess210Pb and trace metal concentrations in depositional areas of the western margin are ≤10% for Ag, Cu, Pb, and Zn and 29% for Cd. However, the variations in the transition zone range from 28% to 93%. This variability is likely related to variations in tidal current velocity, bottom shear stress, and river channel morphology.  相似文献   

16.
A complete record derived from a core dated both by 210Pb and 137Cs chronologies from Lake Ngoring at the headwater areas of the Yellow River provides new insight into the changing atmospheric deposition of trace metals including Cd, Cr, Cu, Ni, Pb, and Zn. This study showed that there was an inflection in the early 1960s, before which both fluxes and contents of Cd, Ni, Pb, and Zn remained relatively steady or slowly increased, and thereafter continued increases both in fluxes and contents were found. Taking Pb as an example, the flux increased from 0.13 (before 1960) to 0.25 mg m?2 a?1 (averaged 1963–2006). According to atmospheric flux calculations using Al as a reference element, atmospheric fluxes of trace metals generally showed a rapid increase and peaked in recent years, closely following the historical economic development of the neighboring region, mainly for Qinghai and Gansu provinces. The atmospheric inventory for Zn was the highest, reaching 1.068 g m?2, while the lowest was for Cd, at only 0.079 gm?2. The percentage proportions of atmospheric deposition for Cd, Ni, and Zn were 37, 12, and 8.7 %, respectively. Hence, the atmospheric contribution to the trace metal content via long range transport is not negligible when considering input of materials to lake ecosystems.  相似文献   

17.
In an attempt to characterize localized rates of sediment accretion, 10 sediment cores were collected from the lower reach of the Passaic River, a major tributary of Newark Bay, New Jersey. Sediments were assayed for 210Pb activity at predetermined depths and the rate of sediment accretion (cm yr?1) was estimated from the least squares regression of the log of unsupported activity versus depth. Sediment accretion rates, derived from 210Pb measurements (RPb) were used to predict the depth interval within the core containing sediments deposited around 1954; subsequent 137Cs analyses were focused on this depth interval. Sediment accretion rates derived from 137Cs measurements (RCs) were extrapolated from the depth of the 1954 horizon. Lead-210 derived sediment accretion rates in cores collected from a sediment bench extending along the inside bend on the southern shore of a meander in the river, ranged from 4.1 cm yr?1 to 10.2 cm yr?1 and averaged 6.8 cm yr?1. The RCs estimates for cores from this area ranged from 3.8 cm yr?1 to 8.9 cm yr?1 and averaged 6.6 cm yr?1. The RCs for cores collected in a more hydrologically dynamic reach of the river upstream of the sediment bench, were only 0.41 cm yr?1 and 0.66 cm yr?1. The results of this investigation indicate that this reach of the lower Passaic River is an area of high sediment accumulation, retaining much of the sediment load deposited from upstream and downstream sources. The rates of sediment accretion in the lower Passaic River are among the highest reported anywhere in the Newark Bay estuary.  相似文献   

18.
Lake sediment cores, dated by 210Pb, were collected from Spectacle Pond (SP), Massachusetts, and Side Pistol Lake (SPL) and Sargent Mountain Pond (SMP), Maine, USA. SP is a kettle seepage lake in granitic sand and gravel. SMP is a drainage pond on granite with little soil in the small watershed. SPL is a drainage lake in granitic till. The three cores were analyzed for total Cd. For SP and SMP, maximum concentrations of 1.7 and 3.9 mg/kg, four and eight times background concentrations, respectively, occur in the late 1960s. Accumulation rates reach maximum values concurrently with concentration and are 0.054 and 0.016 μg/cm2/a, more than 10 times background. Concentration and accumulation rate age relationships in SMP and SP are similar for background values, timing and magnitude of increase to peak values, and the decrease nearly to background values since about 1975. The chemical response to decreased atmospheric deposition lags in SPL sediment. Kettle-like lakes more clearly indicate changes in atmospheric deposition than drainage lakes.  相似文献   

19.
Sediment profiles of210Pb and137Cs in cores collected at increasing distances from the heads of Smeaton Bay and Boca de Quadra fjords indicate that watersheds influence the inventories of radioisotopes present and that the steep topographies of the fjords enhance sediment redistribution. Episodic deposition of terrestrially derived sediment was responsible for roughly 50% of the137Cs and 45% of the210Pb inventories in shallower (less than 180 m) locations in Wilson and Bakewell arms of Smeaton Bay.210Pb sedimentation rates at shallower sites when corrected for episodic deposition were less than sedimentation rates obtained in the deep basins of the fjords where sediment focusing and increased primary productivity in the overlying water column occur. Higher fluxes of dissolved Mn from surficial sediments and subsequent reoxidation in the overlying water may have enhanced scavenging of210Pb in basin locations, resulting in higher inventories. Episodic events have occurred frequently in Smeaton Bay and Boca de Quadra suggesting that steady-state conditions with respect to sedimenting particles can be achieved only when averaged over long time periods approaching the time over which137Cs and210Pb are useful.  相似文献   

20.
选取崇明岛北侧由东至西4个潮滩沉积柱,分析137Cs、226Ra和210Pb放射性比活度,应用210Pb和137Cs放射性同位素定年方法计算崇明岛潮滩沉积物沉积速率。对于东西两端,210Pb方法测得速率分别为3.08cm/a和2.34 cm/a,而137Cs测得速率分别为6.19 cm/a和2.06 cm/a。结果表明,137Cs定年方法计算出的潮滩沉积速率普遍大于210Pb方法结果;但两者反映了相同的速率规律。崇明岛主力生长方向为东和东北,西侧沉积作用相对较弱,表现出"东快西慢"的特点。沉积纵向上,1954年以来,自下而上沉积速率逐渐减缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号