首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measuring the black hole masses of high-redshift quasars   总被引:1,自引:0,他引:1  
A new technique is presented for determining the black hole masses of high-redshift quasars from optical spectroscopy. The new method utilizes the full-width at half-maximum (FWHM) of the low-ionization Mg  ii emission line and the correlation between the broad-line region (BLR) radius and the continuum luminosity at 3000 Å. Using archival ultraviolet (UV) spectra it is found that the correlation between BLR radius and 3000-Å luminosity is tighter than the established correlation with 5100-Å luminosity. Furthermore, it is found that the correlation between BLR radius and 3000-Å continuum luminosity is consistent with a relation of the form   R BLR∝λ L 1/2λ  , as expected for a constant ionization parameter. Using a sample of objects with broad-line radii determined from reverberation mapping it is shown that the FWHM of Mg  ii and Hβ are consistent with following an exact one-to-one relation, as expected if both Hβ and Mg  ii are emitted at the same radius from the central ionizing source. The resulting virial black hole mass estimator based on rest-frame UV observables is shown to reproduce black hole mass measurements based on reverberation mapping to within a factor of 2.5 (1σ). Finally, the new UV black hole mass estimator is shown to produce identical results to the established optical (Hβ) estimator when applied to 128 intermediate-redshift  (0.3 < z < 0.9)  quasars drawn from the Large Bright Quasar Survey and the radio-selected Molonglo quasar sample. We therefore conclude that the new UV virial black hole mass estimator can be reliably used to estimate the black hole masses of quasars from   z ∼ 0.25  through to the peak epoch of quasar activity at   z ∼ 2.5  via optical spectroscopy alone.  相似文献   

3.
We report on the first SCUBA detection of a type 2 QSO at   z = 3.660  in the Chandra Deep Field South. This source is X-ray-absorbed, shows only narrow emission lines in the optical spectrum and is detected in the submillimetre: it is the ideal candidate in an evolution scheme for active galactic nuclei (AGN) (e.g. Fabian 1999 ; Page et al. 2004 ) of an early phase corresponding to the main growth of the host galaxy and formation of the central black hole. The overall photometry (from the radio to the X-ray energy band) of this source is well reproduced by the spectral energy distribution (SED) of NGC 6240, while it is incompatible with the spectrum of a type 1 QSO (3C 273) or a starburst galaxy (Arp 220). Its submillimetre (850 μm) to X-ray (2 keV) spectral slope  (αSX)  is close to the predicted value for a Compton-thick AGN in which only 1 per cent of the nuclear emission emerges through scattering. Using the observed flux at 850 μm we have derived a star formation rate of  550–680 M yr−1  and an estimate of the dust mass   M dust= 4.2 × 108 M  .  相似文献   

4.
We present an analysis of quasar variability from data collected during a photometric monitoring of 50 objects carried out at CNPq/Laboratório Nacional de Astrofísicá, Brazil, between 1993 March and 1996 July. A distinctive feature of this survey is its photometric accuracy, ∼0.02  V  mag, achieved through differential photometry with CCD detectors, which allows the detection of faint levels of variability. We find that the relative variability, δ σ L , observed in the V band is anticorrelated with both luminosity and redshift, although we have no means of discovering the dominant relation, given the strong coupling between luminosity and redshift for the objects in our sample. We introduce a model for the dependence of quasar variability on frequency that is consistent with multiwavelength observations of the nuclear variability of the Seyfert galaxy NGC 4151. We show that correcting the observed variability for this effect slightly increases the significance of the trends of variability with luminosity and redshift. Assuming that variability depends only on the luminosity, we show that the corrected variability is anticorrelated with luminosity and is in good agreement with predictions of a simple Poissonian model. The energy derived for the hypothetical pulses, ∼1050 erg, agrees well with those obtained in other studies. We also find that the radio-loud objects in our sample tend to be more variable than the radio-quiet ones, for all luminosities and redshifts.  相似文献   

5.
6.
We use host galaxy imaging studies of the PG quasar survey to compare the far-infrared (FIR) properties of quasars with disturbed and undisturbed host galaxies. By using survival analysis, we show that the quasars with disturbed host galaxies, with morphologies classified from a homogeneous data set, have a 60-μm luminosity distribution that is different from that of those with undisturbed hosts with >97 per cent confidence. For morphological classifications using an inhomogeneous data set, including HST data for some objects, this confidence rises to >99 per cent confidence. The mean 60-μm luminosity of the disturbed-host quasars is several times greater than that of the undisturbed-host quasars. However, possible biases in the PG survey might affect these conclusions. Our results are interpreted as supporting the idea that quasars are related to at least some ultraluminous infrared galaxies. We discuss the implications of this result for studies of quasar and galaxy evolution.  相似文献   

7.
8.
We present total-intensity and linear-polarization observations at a single epoch for a sample of 11 quasars and one BL Lac object. The data were taken with the VLA A array at λλ 20, 18, 6 and 2 cm. We examine the variation of the degree of polarization, p , and polarization position angle, PA, with wavelength, and attempt to determine the rotation measure, RM, of the cores in these sources. The degree of polarization does not exhibit any systematic variation with wavelength, the median values ranging from 2.3 to 3.5 per cent at the different wavelengths. The variation of PA with λ2 is not linear over the entire wavelength range. However, for most sources the λλ 20-, 18- and 6-cm PAs do follow such a linear relationship, yielding a median |RM| of about 15 rad m−2. In contrast, the λλ 6- and 2-cm observations give a median |RM| of about 129 rad m−2. The long-wavelength emission is likely to originate from a spatially different part of the milliarcsec-scale jet from the λ 2-cm emission, which could turn over at a higher frequency and is likely to be more compact and located closer to the quasar nucleus. We have attempted to obtain linear fits over the entire wavelength range allowing for n  π ambiguities in the PAs, but the fits are not statistically significant. The low values of RM for these core-dominated sources suggest that either the radio emission from the jet intercepts few of the emission-line clouds and their confining medium, or the clouds have a small filling factor and are possibly magnetically confined.  相似文献   

9.
10.
11.
We derive the properties of dusty tori in active galactic nuclei from the comparison of observed spectral energy distributions (SEDs) of SDSS quasars and a precomputed grid of torus models. The observed SEDs comprise SDSS photometry, Two-Micron All-Sky Survey J , H and K data, whenever available, and mid-infrared (mid-IR) data from the Spitzer Wide-area InfraRed Extragalactic Survey. The adopted model is that of Fritz, Franceschini & Hatziminaoglou. The fit is performed by standard  χ2  -minimization; the model, however, can be a multicomponent comprising a stellar and a starburst component, whenever necessary. Models with low equatorial optical depth, τ9.7, were allowed as well as 'traditional' models with  τ9.7≥ 1.0  , corresponding to   A V≥ 22  and the results were compared. Fits using high optical depth tori models only produced dust more compactly distributed than in the configuration where all τ9.7 models were permitted. Tori with decreasing dust density with the distance from the centre were favoured while there was no clear preference for models with or without angular variation of the dust density. The computed outer radii of the tori are of some tens of parsecs large but can reach, in a few cases, a few hundreds of parsecs. The mass of dust, M Dust, and IR luminosity, L IR, integrated in the wavelength range between 1 and 1000 μm, do not show significant variations with redshift, once the observational biases are taken into account. Objects with 70-μm detections, representing 25 per cent of the sample, are studied separately and the starburst contribution (whenever present) to the IR luminosity can reach, in the most extreme but very few cases, 80 per cent.  相似文献   

12.
We present the results of multiwavelength observations of cores and hotspots, at L , C , X and U bands with the Very Large Array, of a matched sample of radio galaxies and quasars selected from the Molonglo Reference Catalogue . We use these observations to determine the spectra of cores and hotspots, and test the unified scheme for radio galaxies and quasars. Radio cores have been detected at all wavelengths in all of the quasars in our sample, whereas only ∼50 per cent of the galaxies have cores detected in at least one of the wavelengths . The degree of core prominence in this sample is consistent with the unified scheme for radio galaxies and quasars. A comparison of the distributions of the two-point spectral index of the cores in our sample of lobe-dominated quasars, with the distributions in a matched sample of core-dominated quasars, shows that the distributions for these two classes are significantly different, and this is consistent with the expectations of the unified scheme. The difference in the spectral indices of the two hotspots on opposite sides is also significantly larger for quasars than for radio galaxies, as is expected in the unified scheme. We also investigate the relationship between the spectral index of the hotspots and the redshift or luminosity for our sample of sources.  相似文献   

13.
We present deep, multi-Very Large Array configuration radio images for a set of 18 quasars, having redshifts between 0.36 and 2.5, from the 7C quasar survey. Approximately one quarter of these quasars have Fanaroff–Riley type I (FR I) type twin-jet structures and the remainder are a broad range of wide angle tail, fat double, classical double, core-jet and hybrid sources. These images demonstrate that FR I quasars are prevalent in the Universe, rather than non-existent as had been suggested in the literature prior to the serendipitous discovery of the first FR I quasar a few years ago, the optically powerful 'radio-quiet' quasar E 1821+643.
Some of the FR I quasars have radio luminosities exceeding the traditional FR I/FR II break luminosity; however, we find no evidence for FR II quasars with luminosities significantly below the break. We consider whether the existence of such high-luminosity FR I structures is due to the increasingly inhomogeneous environments in the higher redshift Universe.  相似文献   

14.
We present the first results from a major HST WFPC2 imaging study aimed at providing the first statistically meaningful comparison of the morphologies, luminosities, scalelengths and colours of the host galaxies of radio-quiet quasars, radio-loud quasars and radio galaxies. We describe the design of this study and present the images that have been obtained for the first half of our 33-source sample. We find that the hosts of all three classes of luminous AGN are massive elliptical galaxies, with scalelengths ≃10 kpc, and R − K colours consistent with mature stellar populations. Most importantly, this is first unambiguous evidence that, just like radio-loud quasars, essentially all radio-quiet quasars brighter than M R =−24 reside in massive ellipticals. This result removes the possibility that radio 'loudness' is directly linked to host galaxy morphology, but is however in excellent accord with the black hole/spheroid mass correlation recently highlighted by Magorrian et al. We apply the relations given by Magorrian et al. to infer the expected Eddington luminosity of the putative black hole at the centre of each of the spheroidal host galaxies we have uncovered. Comparison with the actual nuclear R -band luminosities suggests that the black holes in most of these galaxies are radiating at a few per cent of the Eddington luminosity; the brightest host galaxies in our low- z sample are capable of hosting quasars with M R ≃− 28, comparable to the most luminous quasars at z ≃3. Finally, we discuss our host-derived black hole masses in the context of the radio luminosity:black hole mass correlation recently uncovered for nearby galaxies by Franceschini et al., and consider the resulting implications for the physical origin of radio loudness.  相似文献   

15.
We present multiwavelength observations (from optical to submillimetre, including Spitzer and Submillimetre Common-User Bolometer Array) of H2XMMJ 003357.2−120038 (also GD 158_19), an X-ray selected, luminous narrow-line (type 2) quasar at   z = 1.957  selected from the HELLAS2XMM survey. Its broad-band properties can be reasonably well modelled assuming three components: a stellar component to account for the optical and near-infrared (IR) emission; an active galactic nucleus (AGN) component (i.e. dust heated by an accreting active nucleus), dominant in the mid-IR, with an optical depth at 9.7      along the line of sight (close to the equatorial plane of the obscuring matter) of  τ(9.7) = 1  and a full covering angle of the reprocessing matter (torus) of 140° and a far-IR starburst component (i.e. dust heated by star formation) to reproduce the wide bump observed longward of 70      .
The derived star formation rate is  ≈1500 M yr−1  . The overall modelling indicates that GD 158_19 is a high-redshift X-ray luminous, obscured quasar with coeval powerful AGN activity and intense star formation. It is probably caught before the process of expelling the obscuring gas has started, thus quenching the star formation.  相似文献   

16.
17.
18.
19.
20.
We study the geometry of the Hβ broad emission region by comparing the M BH values derived from Hβ through the virial relation with those obtained from the host galaxy luminosity in a sample of 36 low-redshift  ( z ∼ 0.3)  quasars. This comparison lets us infer the geometrical factor f needed to deproject the line-of-sight velocity component of the emitting gas. The wide range of f values we found, together with the strong dependence of f on the observed linewidth, suggests that a disc-like model for the broad-line region is preferable to an isotropic model, both for radio-loud and radio-quiet quasars. We examined similar observations of the C  iv line and found no correlation in the width of the two lines. Our results indicate that an inflated disc broad-line region, in which the Carbon line is emitted in a flat disc while Hβ is produced in a geometrically thick region, can account for the observed differences in the width and shape of the two emission lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号