首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The prograde amphibole that coexists with chlorite, epidote, muscovite, albite, quartz and hematite in Sanbagawa schists was examined to investigate the relationship between the prograde P-T paths of individual rocks and the metamorphic field gradient in the Sanbagawa metamorphic belt, central Shikoku. The amphibole changes from actinolite, through ferri-winchite and crossite, to barroisite and hornblende with increasing grade along the metamorphic field gradient. However, the sequence of prograde amphibole compositions in each sample varies in different mineral zones. The general scheme can be summarized as: magnesioriebeckite-riebeckite crossite in the upper chlorite zone of lower-grade rocks; crossite or glaucophane barroisite in the garnet zone of medium-grade rocks; and actinolite or winchite barroisite hornblende in the albite-biotite zone of higher-grade rocks. Changes of amphibole composition indicate that the prograde P-T path recorded in the higher-grade rocks was situated on the higher-temperature side of that of the lower-grade rocks and on the lower-pressure side of the metamorphic field gradient. The systematic change of P-T paths implies an increasing d P /d T during continuous subduction. These features can be interpreted as documenting prograde metamorphism within a young subduction zone that has a non-steady-state geotherm.  相似文献   

2.
Metamorphic terranes comprised of blueschist facies and regional metamorphic (Barrovian) rocks in apparent structural continuity may represent subduction complexes that were partially overprinted during syn‐ to post‐subduction heating or may be comprised of unrelated tectonic slices. An excellent example of a composite blueschist‐to‐Barrovian terrane is the southern Sivrihisar Massif, Turkey. Late Cretaceous blueschist facies rocks are dominated by marble characterized by rod‐shaped calcite pseudomorphs after aragonite and interlayered with blueschist that contains eclogite and quartzite pods. Barrovian rocks, which have 40Ar/39Ar white mica ages that are >20 Myr younger than those of the blueschists, are also dominated by marble, but rod‐shaped calcite has been progressively recrystallized into massive marble within a ~200‐m transition zone. Barrovian marble is interlayered with quartzite and schist in which isograds are closely spaced and metamorphic conditions range from chlorite to sillimanite zone over ~1 km present‐day structural thickness. Andalusite, kyanite and prismatic sillimanite are present in muscovite‐rich quartzite; in one location, all three are in the same rock. Andalusite pre‐dates Barrovian metamorphism, kyanite is both pre‐ and syn‐Barrovian and sillimanite is entirely Barrovian. Muscovite with phengitic cores and relict kyanite in quartzite below the staurolite‐in isograd are evidence for pre‐Barrovian subduction metamorphism preserved at the low‐T end of the Barrovian domain; above the staurolite isograd, all evidence for subduction metamorphism has been erased. Some regional metamorphism may have occurred during exhumation, as indicated by syn‐kinematic high‐T minerals defining the fabric of L‐tectonite. Quartz microstructures in lineated quartzite reveal a strong constrictional fabric that may have formed in a transtensional bend in the plate boundary. Transtension accounts for the closely spaced isograds and development of a strong constrictional fabric during exhumation.  相似文献   

3.
The Chinese western Tianshan high-pressure/low-temperature (HP–LT) metamorphic belt, which extends for about 200 km along the South Central Tianshan suture zone, is composed of mainly metabasic blueschists, eclogites and greenschist facies rocks. The metabasic blueschists occur as small discrete blocks, lenses, bands, laminae or thick beds in meta-sedimentary greenschist facies country rocks. Eclogites are intercalated within blueschist layers as lenses, laminae, thick beds or large massive blocks (up to 2 km2 in plan view). Metabasic blueschists consist of mainly garnet, sodic amphibole, phengite, paragonite, clinozoisite, epidote, chlorite, albite, accessory titanite and ilmenite. Eclogites are predominantly composed of garnet, omphacite, sodic–calcic amphibole, clinozoisite, phengite, paragonite, quartz with accessory minerals such as rutile, titanite, ilmenite, calcite and apatite. Garnet in eclogite has a composition of 53–79 mol% almandine, 8.5–30 mol% grossular, 5–24 mol% pyrope and 0.6–13 mol% spessartine. Garnet in blueschists shows similar composition. Sodic amphiboles include glaucophane, ferro-glaucophane and crossite, whereas the sodic–calcic amphiboles mainly comprise barroisite and winchite. The jadeite content of omphacite varies from 35–54 mol%. Peak eclogite facies temperatures are estimated as 480–580 °C for a pressure range of 14–21 kbar. The conditions of pre-peak, epidote–blueschist facies metamorphism are estimated to be 350–450 °C and 8–12 kbar. All rock types have experienced a clockwise PT path through pre-peak lawsonite/epidote-blueschist to eclogite facies conditions. The retrograde part of the PT path is represented by the transition of epidote-blueschist to greenschist facies conditions. The PT path indicates that the high-pressure rocks formed in a B-type subduction zone along the northern margin of the Palaeozoic South Tianshan ocean between the Tarim and Yili-central Tianshan plates.  相似文献   

4.
Abstract The Lancang metamorphic terrane consists of an eastern low- P/T belt and a western high- P/T belt divided by a N–S-trending fault. Protoliths of both units are mid–late Proterozoic basement and its cover. The low- P/T belt includes the Permian Lincang batholith, related amphibolite facies rocks of the Damenglong and Chongshan groups, and Permo-Triassic volcanic and volcaniclastic rocks. Most whole-rock Rb–Sr isochron and U–Pb zircon ages of the Lincang batholith are in the range 290–279 and 254–212 Ma, respectively. Metamorphism of the low- P/T belt reaches upper amphibolite with local granulite facies (735°C at 5 kbar), subsequently retrogressed at 450–500°C during post-Triassic time. The high- P/T rocks grade from west to east from blueschist through transitional blueschist/greenschist to epidote amphibolite facies. Estimated P–T conditions follow the high- P intermediate facies series up to about 550–600°C, at which oligoclase is stable. The 40Ar/39Ar plateau age of sodic amphibole in blueschist is 279 Ma.
The paired metamorphic belts combined with the spatial and temporal distribution of other blueschist belts lead us to propose a tentative tectonic history of south-east Asia since the latest Precambrian. Tectonic juxtaposition of paired belts with contrasting P–T conditions, perhaps during collision of the Baoshan block with south-east Asia, suggests that an intervening oceanic zone existed that has been removed. The Baoshan block is a microcontinent rifted from the northern periphery of Gondwana. Successive collision and amalgamation of microcontinents from either Gondwana or the Panthalassan ocean resulted in rapid southward continental growth of c. 500 km during the last 200 Ma. Hence, the Lancang region in south-east Asia represents a suture zone between two contrasting microcontinents.  相似文献   

5.
Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey   总被引:4,自引:0,他引:4  
The metamorphic rocks from near Kütahya in north-west Anatolia record different stages in the history of closure of the Neo-Tethyan İzmir–Ankara–Erzincan ocean. Sub-ophiolite metamorphic rocks within the Tavşanlı zone are a tectonically composite sequence of quartz–mica schists, amphibole schists, amphibolites and garnet amphibolites. They show increasing metamorphic grade towards the base of the ophiolite. A first metamorphic event, typical of sub-ophiolite metamorphic sole rocks, was characterized by high-grade assemblages, and followed by retrograde metamorphism. A second event was marked by a medium-to high-pressure overprint of the first-stage metamorphic assemblages with assemblages indicating a transition between the blueschist and greenschist facies. The chemistry of the sub-ophiolite metamorphic rocks indicates an ocean island basalt origin, and Ar–Ar dating indicates a high temperature metamorphic event at 93±2 Ma. Counter-clockwise P–T–t paths recorded by the sub-ophiolite metamorphic rocks are interpreted to result from intra-oceanic thrusting during the closure of the İzmir– Ankara–Erzincan ocean, initiating subduction, which formed the high-temperature assemblages. Further subduction then produced the widespread blueschists of the Tavşanlı zone during the Late Cretaceous. Later cold thrusting obducted the ophiolite (with the metamorphic sole welded to its base), ophiolitic melanges and blueschists onto the Anatolide passive margin in the latest Cretaceous. All these events pre-date the final Anatolide–Pontide continent–continent collision.  相似文献   

6.
We report the first occurrence of poly-cyclic high-pressure low-temperature (HP-LT) rocks from the easternmost Indus-Yarlung suture zone, formed during subduction of Neo-Tethyan oceanic lithosphere. Petrology, mineral composition and P–T pseudosection modelling reveal two low-temperature eclogite facies metamorphic events with an initial high-pressure P–T condition of 16.4–18.7 kbar and 510–520°C, exhumation to 10.5–12.0 kbar and 580–590°C and a subsequent second high-pressure P–T condition of ~16 kbar and ~560°C and exhumation to ≤9 kbar and ≤600°C. This history implies a complex ‘yo-yo type’ P–T path. In situ monazite dating and textural relationships show that late-stage exhumation, cooling and garnet breakdown occurred at c. ~25–22 Ma. We interpret the first burial event to represent subduction of the Neo-Tethys Ocean at the eastern Indus-Yarlung suture zone. Initial exhumation, reburial and final exhumation represent material transport in a large-scale convective circulation system in the subduction channel. Convective overturn in the subduction channel evidently serves both as a mechanism to produce poly-cyclic metamorphism and to exhume LT eclogite facies rocks.  相似文献   

7.
The Sanbagawa metamorphic belt of southwest Japan is one of the type localities of subduction‐related high‐P metamorphism. However, variable pressure–temperature (PT) paths and metabasic assemblages have been reported for eclogite units in the region, leading to uncertainty about the subduction zone paleo‐thermal structure and associated tectonometamorphic conditions. To analyse this variation, phase equilibria modelling was applied to the three main high‐P metabasic rock types documented in the region – glaucophane eclogite, barroisite eclogite and garnet blueschist – with modelling performed over a range of P, T, bulk rock H2O and bulk rock ferric iron conditions using thermocalc . All samples are calculated to share a common steep prograde PT path to similar peak conditions of ~16–20 kbar and 560–610 °C. The results establish that regional assemblage variation is systematic, with the alternation in peak amphibole phase due to peak conditions overlapping the glaucophane–barroisite solvus, and bulk composition effects stabilizing blueschist v. eclogite facies assemblages at similar PT conditions. Furthermore, the results reveal that a steep prograde PT path is common to all eclogite units in the Sanbagawa belt, indicating that metamorphic conditions were consistent along strike. All localities are compatible with predictions made by a ridge approach model, which attributes eclogite facies metamorphism and exhumation of the Sanbagawa belt to the approach of a spreading ridge.  相似文献   

8.
Regional variation in the P–T path of the Sambagawa metamorphic rocks, central Shikoku, Japan has been inferred from compositional zoning of metamorphic amphibole. Rocks constituting the northern part (Saruta River area) exhibit a hairpin type P–T path, where winchite/actinolite grew at the prograde stage, the peak metamorphism was recorded by the growth of barroisite to hornblende and sodic amphibole to winchite/actinolite grew at the retrograde stage. In the southern part (Asemi River area), rocks exhibit a clockwise type P–T path, where barroisite to hornblende core is rimmed by winchite to actinolite. The difference in P–T path could suggest a faster exhumation rate (i.e. more rapid decompression) in the southern than in the northern part. On the other hand, physical conditions of deformation during the exhumation stage have been independently inferred from microstructures in deformed quartz. Recrystallized quartz grains in rocks from the low‐grade (chlorite and garnet) zones are much more stretched in the southern part (aspect ratio ≥ 4.0) than in the northern part (aspect ratio< 4.0), indicating a higher strain rate in the former than in the latter. These facts may indicate that the exhumation and strain rates are correlated (i.e. the exhumation rate increases with increasing the strain rate). The difference in the exhumation rate inferred from amphibole zoning between the northern and southern parts could be explained by an extensional model involving normal faulting, where the lower plate can be exhumed faster than the upper plate due to the displacement along the fault. Furthermore, the model may explain the positive correlation between the exhumation and strain rates, because the lower plate tended to support more stress than the upper plate.  相似文献   

9.
The metamorphic history of mafic exotic blocks from a tectonic melange zone within an allochthonous ophiolitic terrane (Marmora Terrane) of the Pan-African Gariep orogenic belt in south-western Namibia was studied, based on mineral parageneses and amphibole composition. Glaucophane described previously from these rocks could not be verified. Instead, two types of blue amphiboles were distinguished: (i) rims of (ferro-) edenitic to pargasitic to barroisitic hornblende composition around brownish amphibole phenocrysts replacing magmatic clinopyroxene, and (ii) deep blue porphyroblasts of magnesio-riebeckite with little ferro-glaucophane component in a highly metasomatized albite-rich rock. Textural and mineralogical evidence, particularly the existence of up to three different amphibole generations in metagabbro samples, supports a multiphase metamorphic history experienced by these exotic blocks. The first metamorphic event, M1, is interpreted as very low- P hydrothermal oceanic metamorphism that affected the igneous protoliths at up to amphibolite facies temperatures. Subsequent M2 metamorphism was syntectonic and is characterized by temperatures similar to those attained during M1 but higher pressures indicating burial to 15–20 km. This event is related to a subduction process. The third metamorphic event, M3, was low grade and of regional nature. It is the only one recorded in the sedimentary envelope of the exotic blocks. The formation of magnesio-riebeckite is considered a retrograde reaction at greenschist facies during M2. The results indicate that in the Gariep belt subduction and subsequent obduction have occurred, although blueschist facies metamorphism has not been reached.  相似文献   

10.
Abstract The Qinling–Dabie accretionary fold belt in east-central China represents the E–W trending suture zone between the Sino-Korean and Yangtze cratons. A portion of the accretionary complex exposed in northern Hubei Province contains a high-pressure/low-temperature metamorphic sequence progressively metamorphosed from the blueschist through greenschist to epidote–amphibolite/eclogite facies. The 'Hongan metamorphic belt'can be divided into three metamorphic zones, based on progressive changes in mineral assemblages: Zone I, in the south, is characterized by transitional blueschist–greenschist facies; Zone II is characterized by greenschist facies; Zone III, in the northernmost portion of the belt, is characterized by eclogite and epidote–amphibolite facies sequences. Changes in amphibole compositions from south to north as well as the appearance of increasingly higher pressure mineral assemblages toward the north document differences in metamorphic P–T conditions during formation of this belt. Preliminary P–T estimates for Zone I metamorphism are 5–7 kbar, 350–450°C; estimates for Zone III eclogites are 10–22 kbar, 500 ± 50°C.
The petrographic, chemical and structural characteristics of this metamorphic belt indicate its evolution in a northward-dipping subduction zone and subsequent uplift prior to and during the final collision between the Sino-Korean and Yangtze cratons.  相似文献   

11.
吉林-黑龙江高压变质带的初步厘定:证据和意义   总被引:14,自引:11,他引:3  
本文定义的吉林-黑龙江高压变质带是指我国东北地区佳木斯-兴凯地块西缘和南缘共同发育的呈弧形展布的高压变质带,具体包括佳木斯-兴凯地块西缘增生杂岩带(黑龙江蓝片岩带和张广才-小兴安岭增生杂岩带)和佳木斯-兴凯地块南缘的长春-延吉增生杂岩带.其中佳木斯-兴凯地块西缘增生杂岩带形成于晚三叠-早侏罗世(180 ~ 210Ma),为佳木斯-兴凯地块向西冲增生而形成的高压变质带;而长春-延吉增生杂岩带由一系列特征性俯冲-增生杂岩组成,包括石头口门-烟筒山红帘石片岩带、呼兰群变质杂岩、色洛河群变质杂岩、青龙村群变质杂岩和开山屯变质杂岩等,形成时代为187~230Ma,峰期为220~230Ma.长春-延吉增生杂岩带曾被认为是西拉木伦河断裂带的东延部分,但是区域构造分析表明,它们形成的动力学背景与佳木斯-兴凯地块西缘增生杂岩带相同,均为太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合过程.我们将佳木斯-兴凯地块西缘和南缘发育的三叠纪-早侏罗世增生杂岩带作为统一的构造单元来考虑,结合该区发育有典型的高压变质带,因此命名为“吉林-黑龙江高压变质带,简称吉黑高压带”.吉黑高压带形成于太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合的过程,同时该带记录了古亚洲构造域的结束和太平洋俯冲开始的关键时期,为两大构造域叠加与转换的关键性地质证据.  相似文献   

12.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

13.
The Hong'an region in the Qinling–Dabie collisional zone in eastern China hosts a series of metamorphic rocks exposing a south-to-north distribution from blueschist/blueschist–greenschist, amphibolite, eclogite (kyanite free) and kyanite–eclogite to coesite–eclogite facies rocks that represent progressively deeper levels of the Mesozoic subduction–collision complex. The Hong'an area is interesting for three reasons: (1) it escaped the thermal and structural overprint imparted on much of the Dabie Mountains during Early Cretaceous intrusion of voluminous granites and granodiorites; (2) the high-pressure (HP) Hong'an eclogites are widely distributed, often preserve prograde crystallization histories and can be directly linked in time and space to the blueschist/blueschist–greenschist rocks exposed to the south; (3) the blueschist/blueschist–greenschist facies rocks are generally better exposed than their equivalents in the southeastern Dabie Mountains and offer some opportunity for simultaneous structural and metamorphic analysis. The Hong'an area HP rocks offer perhaps the closest approximation to a preserved snapshot of Mesozoic pressure–temperature (PT) conditions attending early subduction–exhumation in the region, and are thus essential to generating a coherent picture of the dynamics attending both metamorphism and exposure of the coeval ultrahigh-pressure (UHP) rocks. The purpose of this contribution is twofold: (1) to document previously unpublished metamorphic and structural data characterizing these HP sequences and their relative continuity in Hong'an; (2) to incorporate these data with recent geochronologic, structural and paleomagnetic information in the context of protracted, late Paleozoic through Mesozoic subduction, collision and exhumation. Metamorphism and exhumation of some of the southern Hong'an HP sequences appear to have occurred concomitant with oceanic subduction immediately to the west, and thus may have preceded widespread continental subduction/collision. Moreover, all of the HP–UHP sequences in the region were exhumed before the end of collision between the Sino-Korean and Yangtze cratons at ca. 160 Ma. Exhumation of HP–UHP rocks both before and during continental plate collision is neither novel for central China nor for other HP–UHP zones, but is important to take into account when reconstructing the evolution of such orogens.  相似文献   

14.
A low‐grade metamorphic “Coloured Mélange” in North Makran (SE Iran) contains lenses and a large klippe of low temperature, lawsonite‐bearing blueschists formed during the Cretaceous closure of the Tethys Ocean. The largest blueschist outcrop is a >1,000 m thick coherent unit with metagabbros overlain by interlayered metabasalts and metavolcanoclastic rocks. Blueschist metamorphism is only incipient in coarse‐grained rocks, whereas finer grained, foliated samples show thorough metamorphic recrystallization. The low‐variance blueschist peak assemblage is glaucophane, lawsonite, titanite, jadeite±phengitic mica. Investigated phase diagram sections of three blueschists with different protoliths yield peak conditions of ~300–380°C at 9–14 kbar. Magnesio‐hornblende and rutile cores indicate early amphibolite facies metamorphism at >460°C and 2–4 kbar. Later conditions at slightly higher pressures of 6–9 kbar at 350–450°C are recorded by barroisite, omphacite and rutile assemblages before entering into the blueschist facies and finally following a retrograde path through the pumpellyite–actinolite facies across the lawsonite stability field. Assuming that metamorphic pressure is lithostatic pressure, the corresponding counterclockwise P–T path is explained by burial along a warm geothermal gradient (~15°C/km) in a young subduction system, followed by exhumation along a cold gradient (~8°C/km); a specific setting that allows preservation of fresh undecomposed lawsonite in glaucophane‐bearing rocks.  相似文献   

15.
羌塘中部高压变质带的退变质作用及其构造侵位   总被引:6,自引:1,他引:5  
董永胜  李才  施建荣  王生云 《岩石学报》2009,25(9):2303-2309
羌塘中部的高压变质带主要由榴辉岩、石榴石白云母片岩和蓝片岩等组成,它们在遭受高压变质作用之后折返,构造侵位于晚古生代展金组地层中,二者以韧性变形带为接触边界.本文以高压变质带中的榴辉岩和韧性变形带为研究对象,讨论了高压变质带折返过程中的退变质作用特征及折返时代.研究表明,榴辉岩在高峰期变质作用之后的折返过程中经历了由榴辉岩相→蓝片岩相→绿帘角闪岩相的退变质作用演化过程;在高压变质带构造侵位过程形成的韧性变形带中,白云母石英片岩的白云母40Ar-39Ar坪年龄为219±2Ma.高压变质带在219Ma左右构造侵位于展金组地层中,并于214Ma之前最终抬升出露地表.  相似文献   

16.
The chemistry and phase relations of calcic and sodic amphiboles in the Ouégoa blueschists are investigated. The first appearance of sodic amphiboles is controlled by bulkrock chemistry. Sodic amphibole appears first in weakly-metamorphosed pumpellyite metabasalts prior to the crystallization of lawsonite but does not crystallize in pelitic schists until the middle of the lawsonite zone; sodic amphibole continues as an apparently stable phase in rocks of all bulk compositions into, and throughout, the highest-grade rocks in the district. Calcic amphibole is widespread in metabasalts of the lawsonite and epidote zones and also occurs in metasediments of appropriate composition. Coexisting pairs of calcic and sodic amphiboles are common in metabasalts but they have also been found in some metasediments. A grunerite-riebeckite pair is described.Electron-probe analyses of 120 amphiboles from representative rock-types are presented in graphical form. Sodic amphiboles show an increased Mg/(Mg+Fe) ratio with increasing metamorphic grade. Sodic amphiboles in pelitic schists are ferroglaucophane in the lawsonite zone and crossite and glaucophane in the epidote zone. Sodic amphiboles in metabasalts are iron-rich crossites in weakly-metamorphosed rocks and more-magnesian crossites and glaucophanes in the lawsonite and epidote zones. The abrupt increase in Mg/(Mg+Fe) ratio in sodic amphiboles at the epidote isograd is attributed to the crystallization of epidote and almandine which take the place of lawsonite and spessartine of the lawsonite zone. Calcic amphiboles are fibrous actinolites in the lawsonite zone and grade with increasing Al and Na/Ca ratio into prismatic blue-green hornblendes (barroisites) in the upper epidote zone. In calcic amphiboles, increasing metamorphic grade effects the coupled substitution of (Na+Al) for (Ca+Mg) and a small increases in Fe/Mg ratio; octahedrally and tetrahedrally coordinated Al increases in an approximately 11 ratio. Both the calcic and the sodic amphiboles show an increase in A-site occupancy with increasing metamorphic grade. In two-amphibole assemblages Ti, Mn and K are concentrated in the calcic amphibole.The textural and chemical relations between coexisting calcic and sodic amphiboles are discussed. If the calcic and sodic amphiboles are an equilibrium pair then the data collected from the Ouégoa amphiboles gives a picture of a very asymmetric solvus in the system glaucophane-actinolite-hornblende, i.e. steep-sided to glaucophane and with a gentle slope to the calcic amphibole field; there is no indication of any termination of the solvus under the pressure-temperature conditions of crystallization of the Ouégoa schists.  相似文献   

17.
High‐P metamorphic rocks that are formed at the onset of oceanic subduction usually record a single cycle of subduction and exhumation along counterclockwise (CCW) P–T paths. Conceptual and thermo‐mechanical models, however, predict multiple burial–exhumation cycles, but direct observations of these from natural rocks are rare. In this study, we provide a new insight into this complexity of subduction channel dynamics from a fragment of Middle‐Late Jurassic Neo‐Tethys in the Nagaland Ophiolite Complex, northeastern India. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of a medium‐grade amphibolite tectonic unit within a serpentinite mélange, we establish two overprinting metamorphic cycles (M1–M2). These cycles with CCW P–T trajectories are part of a single tectonothermal event. We relate the M1 metamorphic sequence to prograde burial and heating through greenschist and epidote blueschist facies to peak metamorphism, transitional between amphibolite and hornblende‐eclogite facies at 13.8 ± 2.6 kbar, 625 ± 45 °C (error 2σ values) and subsequent cooling and partial exhumation to greenschist facies. The M2 metamorphic cycle reflects epidote blueschist facies prograde re‐burial of the partially exhumed M1 cycle rocks to peak metamorphism at 14.4 ± 2 kbar, 540 ± 35 °C and their final exhumation to greenschist facies along a relatively cooler exhumation path. We interpret the M1 metamorphism as the first evidence for initiation of subduction of the Neo‐Tethys from the eastern segment of the Indus‐Tsangpo suture zone. Reburial and final exhumation during M2 are explained in terms of material transport in a large‐scale convective circulation system in the subduction channel as the latter evolves from a warm nascent to a cold and more mature stage of subduction. This Neo‐Tethys example suggests that multiple burial and exhumation cycles involving the first subducted oceanic crust may be more common than presently known.  相似文献   

18.
The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13–15.5 kbar at temperatures of 420–500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5–7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).  相似文献   

19.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   

20.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号