首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Climate disasters are now on the rise and more likely to increase in frequency and/or severity under climate change in the future. To clearly illustrate spatial–temporal distributions of climate disasters and the response of wheat yields to disasters over the past three decades, several disaster indices including the impact of climate disasters, the sensitivity to climate disasters and the response index of wheat yield losses to climate disasters were defined and calculated. The impact and sensitivity indices were examined by the agricultural production losses due to climate disasters, and the response of wheat yields to climate disasters was assessed by wheat yield loss compared with the 5-year moving average. The results showed that the indices of climate disaster impacts and sensitivities as well as response index of wheat yields to climate disasters could represent the spatial–temporal distributions of climate disasters well in the whole China. Droughts in northern China had higher impacts and sensitivities than those in southern China during the period 1983–2008, but the impacts of floods were opposite. In northern China, although impacted area by drought was larger than that by flood, the flood sensitivities were larger than drought sensitivities when flood happened. Although drought significantly affected wheat yields in most of the regions with drier conditions during 1983–2008 in major wheat-producing regions, better management practices like irrigation and drought-tolerant cultivars applied in the Huang-Huai-Hai Plain can adapt to climate disasters especially droughts. To ensure the stability of agricultural production, future food security will need to be achieved through quantifying the relative effects of climate disasters and effective adaptation to increasingly frequent extreme climate events.  相似文献   

2.
Pei  Wei  Tian  Cuizhu  Fu  Qiang  Ren  Yongtai  Li  Tianxiao 《Natural Hazards》2022,110(3):1599-1620

The risk analysis of flood and drought disasters and the study of their influencing factors enhance our understanding of the temporal and spatial variation law of disasters and help identify the main factors affecting disasters. This paper uses the provincial administrative region of China as the research area. The proportion of the disaster area represents the degree of the disaster. The statistical distribution of the proportions was optimized from 10 alternative distributions based on a KS test, and the disaster risk was analyzed. Thirty-five indicators were selected from nature, agriculture and the social economy as alternative factors. The main factors affecting flood and drought disasters were selected by Pearson, Spearman and Kendall correlation coefficient test. The results demonstrated that the distribution of floods and drought is right-skewed, and the gamma distribution is the best statistical distribution for fitting disasters. In terms of time, the risk of flood and drought disasters in all regions showed a downward trend. Economic development and the enhancement of the ability to resist disasters were the main reasons for the change in disasters. Spatially, the areas with high drought risk were mainly distributed in Northeast and North China, and the areas with high flood risk were mainly distributed in the south, especially in Hubei, Hunan, Jiangxi and Anhui. The distribution of floods and drought disasters was consistent with the distribution characteristics of precipitation and water resources in China. Among the natural factors, precipitation was the main factor causing changes in floods and drought disasters. Among the agricultural and socioeconomic factors, the indicators reflecting the disaster resistance ability and regional economic development level were closely related to flood and drought disasters. The research results have reference significance for disaster classification, disaster formation mechanisms and flood and drought resistance.

  相似文献   

3.
通过对陕西省延安地区明代(公元1368—1644年)历史资料的搜集和整理,对该时期干旱灾害等级、时间变化及成因进行了分析。结果表明:在明代的277年中,延安地区共发生干旱灾害91次,平均每3年发生1次。轻度干旱灾害发生17次,中等干旱灾害发生30次,大干旱灾害发生29次,特大干旱灾害发生15次,分别占到干旱灾害总数的18.7%、32.9%、31.9%和16.5%。大干旱灾害与特大干旱灾害发生频次高是明代延安地区干旱灾害的突出特点,指示明代总体为干旱气候期。延安明代干旱灾害可分为4个阶段,第一阶段为公元1368—1420年,为干旱灾害少发期;第二阶段为公元1421—1520年,为干旱灾害多发期;第三阶段为公元1521—1617年,为干旱灾害少发期;第四阶段为公元1618—1644年,为干旱灾害多发期。各等级干旱灾害特别是大与特大干旱灾害显著增加,指示第二、四阶段气候显著变干,降雨量明显减少。延安地区明代出现了2个极端干旱气候亚阶段,分别在1480—1499年和1626—1641年之间,当时年均降水量比现今少200 mm左右。  相似文献   

4.
Di Luzio  E.  Mazzanti  P.  Brunetti  A.  Baleani  M. 《Natural Hazards》2020,100(3):909-931

The Ningxia Hui Autonomous Region of China (Ningxia), one of main agriculture areas in northwest China, has been severely affected by drought. Based on observed meteorological data, outputs of 20 global climate models and drought disaster data, future climate change and relevant drought hazard in the twenty-first century were projected in Ningxia, with the scenarios of RCP2.6 and RCP4.5; the risks of people, crop, and agriculture economy to drought disasters are quantitatively assessed, with the application of physical vulnerability curve models, probability distribution functions and Monte Carlo simulation method. It is found that the climate in Ningxia is likely to have a warming and wetting tendency in the twenty-first century. The extent of drought hazard is likely to increase. The increase rate is greater under RCP4.5 than that under RCP2.6. In general, the risks of population, crop, and agriculture to drought disasters are likely to increase in Ningxia in the twenty-first century. The magnitude of increase is likely to reach the greatest in the immediate term (2016–2035), followed by the increase in the medium term (2046–2065), and the long term (2081–2100). In comparison with RCP2.6, the drought disaster risks under the scenario of RCP4.5 are likely to increase further in three periods of the twenty-first century. The findings of this work have potential to provide data support for drought disaster risk management and support risk-based decision-making.

  相似文献   

5.
Spatial and temporal changes in flooding and the affecting factors in China   总被引:5,自引:3,他引:2  
Spatial and temporal changes in flood events in China are becoming increasingly important due to the rapid climate warming that is occurring. This study was conducted to consider changes in flood events and the factors affecting such changes. To accomplish this, China was divided into natural and social-economic flood regions: north China, northwest China, northeast China, southwest China, central China, east China, south China, and Taiwan, Hong Kong and Macau. Spatial and temporal changes in flood patterns were rebuilt during 1980?C2009, and Fast Fourier Transform Filtering was then employed to stimulate the changes in floods during this period. The factors affecting flooding were then analyzed quantitatively. The results showed that, based on the time series for China as a whole, flooding was more serious during 1990?C1999 than 1980?C1989 and 2000?C2009. However, in different regions, the trends in flooding differed greatly. Based on spatial changes, the areas hardest hit by floods were northeast China in the 1980s, northeast China, central China and east China in the 1990s, and central China after 2000. In China, the main flood-affecting factors were meteorological, ecological, population, water conservation facilities, and policy factors. However, the main affecting factors differed by region. Overall, the complex spatial and temporal features of flood variations and various affecting factors demand proper national and regional governmental action in the face of the changing flood patterns in China. The results of the present study provide valuable information to flood policymakers and flood disaster researchers.  相似文献   

6.
Extreme weather events present environmental and social challenges across the Eurasian steppe. In Mongolia much attention is given to drought and dzud (severe winter conditions) impact on rural livelihoods, landscapes and governance. A link between the two events, fostered by international and state agencies, speculates that drought leads to dzud; this has become the widely accepted doctrine. However, the relationship between the two events is assumed rather than analysed. Whilst there may be natural links between climate events, causality is more difficult to establish yet often claimed post-event. This paper stresses Mongolia’s destructive dzuds of 1999–2001 and 2009–2010 in examining drought frequency before dzud events. Findings question the hazard connection as just 3 of 32 examined dzud events were preceded by drought. Investigation did not document a relationship between the disasters; linkages between extreme events were implied rather than established. The human role in disaster also needs to be assessed as preparation, and response are key factors for mitigation. Study results identified a lack of causality between the disasters, suggesting more assiduous investigation of hazards is needed in Mongolia. This can clarify causal factors, identify risk and improve disaster mitigation strategies in Mongolia.  相似文献   

7.
The traditional studies on drought disaster risk were based on the ground point data, which were unable to realize the continuity of space and the timeliness. It is shown that the monitoring and evaluation precision on drought were reduced significantly. However, remote sensing data in adequate spatial and temporal resolution can overcome these limitations. It can better monitor the crop in large area dynamically. This study presents a methodology for dynamic risk analysis and assessment of drought disaster to maize production in the northwest of Liaoning Province based on remote sensing data and GIS from the viewpoints of climatology, geography and disaster science. The model of dynamic risk assessment of drought disaster was established based on risk formation theory of natural disaster, and the expression of risk by integrating data came from sky, ground and space. The risk indexes were divided into four classes by data mining method, and the grade maps of drought disaster risk were drawn by GIS. It is shown that the spatial and temporal risk distributions of maize at each growth stage changed over time. The model has been verified against reduction in maize yield caused by drought. It demonstrated the reasonability, feasibility and reliability of the model and the methodology. The dynamic risk assessment of regional drought disaster for maize can be used as a tool, which can timely monitor the status (the possibility and extent of drought) and trends of regional drought disaster. The results obtained in this study can provide the latest information of regional drought disaster and the decision-making basis of disaster prevention and mitigation for government management and farmers.  相似文献   

8.
Northeast China as an important agricultural zone for commercial and economic crop in China suffered from increased drought risk that seriously threatened agricultural production and food security in recent decades. Based on precipitation datasets from 71 stations from 1960 to 2009 and on the reliable statistical methods of the Mann–Kendall test, Sen’s slope and the Standardized Precipitation Index, we analyzed the temporal and spatial variation of drought occurrence during the crop-growing season (from May to September) and summer (from June to August). The results showed that regional mean precipitation during the crop-growing season and summer over the last 40 years has decreased at the rate of ?1.72 and ?1.12 mm/year, respectively. According to timescale analysis of abrupt changes, there were two distinct time series (1965–1983 and 1996–2009) with decreasing precipitation trends at a 95 % confidence level. A comparison between the two time series of these two periods demonstrated that more frequent and more severe drought occurred during 1996–2009. Furthermore, drought risk in recent decades has become even more serious both in severity and in extent. Especially in the crop-growing season of 2001 and summer of 2007, over 25 % (2.0 × 105 km2) of study area experienced severe drought (serious and extreme droughts). Our results highlight the urgent need for the development of effective drought adaptations for cropland over northeast China.  相似文献   

9.
1368—1948年陇中地区干旱灾害时间序列分形特征研究   总被引:2,自引:0,他引:2  
采用标度变换法对陇中地区1368—1948年(明代至新中国建立前)各等级干旱灾害及旱季序列的时间分维值进行测算。并深入讨论了各旱灾序列时间分维与其线性特征之间的关系,以及分维随时间演进的变化趋势。对4个干旱等级、4个旱季序列的分维值进行研究,发现:①干旱灾害具有客观的分形结构,其时间序列是具有自组织性质的,干旱灾害是自组织系统;②各等级干旱灾害有自己的时间重演律,干旱灾害越轻,无标度区越宽,分维值越高,短周期更明显;③各旱季分维值与其发生频次成正比;④整个时期的动态总体上表现为:各旱灾序列(旱灾、大旱灾、中度干旱、春旱及伏旱)分维值逐渐增大,旱灾发生趋向混沌无序,旱灾系统趋向平衡态,稳定性减小;⑤分形分析法与常规统计方法之间有着内在联系。  相似文献   

10.
This study presents a methodology of risk early warning of maize drought disaster in Northwestern Liaoning Province from the viewpoints of climatology, geography, disaster science, environmental science, and so on. The study area was disaggregated into small grid cells, which has higher resolution than counties. Based on the daily meteorological data and maize yield data from 1997 to 2005, the risk early warning model was built up for drought disaster. The early warning crisis signs were considered from exogenous warning signs and endogenous warning signs. The probability of drought was taken as endogenous warnings sign, which was calculated by logistic regression model. Beside precipitation, wind speed and temperature were taken into consideration when assessing the drought. The optimal partition method was used to define the threshold of each warning grade. Take the year of 2009 as an example, this risk early warning model performed well in warning drought disasters of each maize-growing stage. Results obtained from the early warning model can guide the government to take emergency action to reduce the losses.  相似文献   

11.
Hazard analysis is the first step in any disaster management activity. Drought is a serious environmental hazard strongly limiting the agricultural production in the tropical countries like India. A comprehensive drought hazard map is useful for multiple perspectives such as agriculture, environment and hydrology. In this study, daily rainfall data of the Climate Prediction Centre during the south-west monsoon season (June–September) of 12 years, over India was analysed. Based on rainfall and rainy days, six indicators of drought were generated which were then synthesized into a composite index of drought hazard for every 10 × 10 km pixel. The weights for the composite index were generated through variance approach. The index has effectively captured the spatial variations in meteorological drought across India by showing a typical pattern with increasing hazardous area from east to west. The drought hazard map also shows considerable agreement with the climate classification map and the drought proneness map reported by other studies. Thus, the current study presents a simple and novel approach for drought hazard analysis, using the routinely available geospatial rainfall data products. The methodology can be extended to other geographies and disasters too. Use of time series data of longer period would improve the reliability of the composite drought hazard index.  相似文献   

12.
Risk assessment to China’s agricultural drought disaster in county unit   总被引:14,自引:7,他引:7  
Hao  Lu  Zhang  Xiaoyu  Liu  Shoudong 《Natural Hazards》2012,61(2):785-801
China faces drought disaster risk under the changing climate. Risk analysis is a suitable approach in order to design ex-ante measure able to anticipate effects of drought on agricultural production. In this article, with the support of historic drought disaster data from 583 agro-meteorological observations (1991–2009), a risk analysis method based on information diffusion theory was applied to create a new drought risk analysis model, and the risk of China’s agriculture drought disaster was evaluated on higher spatial resolution of county unit. The results show that in more than three hundred counties of China, risk probability was biyearly or annually when Drought Affected Index (DAI) was over 5%. When DAI was up to 40%, more than one hundred counties were prone to drought disaster annually or once every 5 years. This showed that the impact of drought disaster on China’s agriculture, whether in frequency or intensity, was large. With the different level of DAI, China’s agricultural drought risk pattern showed variable pattern characteristics. When DAI was low, the distribution of county agricultural drought risk in China presented the East–West pattern of differentiation, and high risk mainly lied in the eastern, low risk mainly in the western. On the other hand, when DAI was high, the distribution of county risk appeared a pattern of high in center, and the north areas higher than the south, increased gradually from southwest to northeast. Drought risk presents a clear zonal differentiation that may be result from stepped topography, different precipitation and hazard-affected bodies. Spread of high value area of drought risk in northern may be related to the southeast monsoon and ecological degradation in northern Ecotone.  相似文献   

13.
人类活动加剧,加之极端气候频繁发生,导致中国地质灾害发生风险增加,严重影响着区域社会经济的健康稳定发展。基于2000—2019年我国地质灾害数据,本文对4类主要地质灾害(滑坡、崩塌、泥石流、地面塌陷)的变化特征及其造成的生命财产损失以及防治项目与投资金额进行分析。结果表明:近20年间,强降雨引发的滑坡占比达68. 2%,是我国最主要的地质灾害;四类地质灾害造成的直接经济损失可划分成两个阶段:2000—2009年和2010—2019年,两个阶段造成的直接经济损失和人员伤亡因主要发生区域不同而存在差异;防治项目数和投资金额亦可划分成两个阶段,且二者在2010—2017年比2000—2009年均增加5倍以上。  相似文献   

14.
利用西北五省区137个测站的1961-2009年逐月降水量资料计算标准化降水指数(SPI), 统计了逐月、春末夏初、初夏、夏季及秋季的干旱、重旱、特旱的频率及面积率, 分析其时空变化特征.结果表明: 新疆北部、青海的中部及甘肃河西是西北地区干旱频率较高的区域, 干旱频率在15个月以上, 新疆南部除个别月份干旱发生频率较高外, 总体干旱发生频率较低;干旱发生区域随月份有由南到北、由西向东变化的趋势;除新疆、青海、及甘肃个别区域重旱频率超过5月外, 其他区域基本上都在5月以下;新疆南部重旱频率仍然较低;夏季发生范围高于其他季节;新疆北部、甘肃河西是特旱的高发区. 不同等级的月及季节干旱面积率其逐年变化具有相似的特征, 西北干旱面积率的变化总体上可以分为3个阶段: 1961-1980年干旱面积率比较高, 平均在35%左右;1981-1990年为转折期, 干旱面积率下降到15%左右;而1991-2009年为稳定期, 干旱面积率变化不大.全球气候变暖导致西北地区降水量、冰川融水量、河川径流量增加和湖泊水位上升、面积扩大, 是1987年以来干旱面积率下降的原因.  相似文献   

15.
According to records of 17 meteorological stations distributed in the study area, climate change of the middle Inner Mongolia in northern China was analyzed in this paper. Based on SPOT VGT data, combined with field investigation, local vegetation change was detected in the last 10 years. The results show that annual mean air temperature obviously rose, while precipitation slightly decreased in fluctuation in the study area during the last 50 years. Air temperature increasing rates are +0.318°C 10 year−1 during 1960-2009 and +0.423°C 10 year−1 during 1980–2009, while precipitation decreasing rates are −2.91 mm 10 year−1 during 1960–2009. There were five different dry or wet periods from the 1960s to the 2000s in order, and the wetter 1990s and the drier 2000s changed dramatically in the study area. Local climate totally tend to warm–dry conditions during the last 50 years. According to coefficient of variation (Cv) of yearly growing-season cumulative NDVI value and yearly NDVI maximum in pixel scale, vegetation had experienced huge temporal and spatial variation during the last 10 years. Recently, frequent droughts and dust storms seriously affected local agriculture and grazing activities, and resulted in heavy economic loss, especially over the drought period of 1999–2001. Faced with those drought disasters accompanied with strong dust storms, the local authorities proposed the enclosing-transferring strategy and made great efforts to adapt overt climate change and improve environment, including making selective emigration, decreasing livestock numbers, fencing grasslands and building forage production bases with irrigation instruments and actively adjusting industry structure. However, some effects and potential problems of this adaptation strategy still need to be comprehensively assessed further in longer time scales and aimed at different sub-regions.  相似文献   

16.
干旱频率分析研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
从干旱定义与识别、点干旱频率分析和区域干旱频率分析3个方面系统阐述了干旱频率分析研究进展和存在问题,归纳了适用于干旱频率分析的干旱定义,干旱识别存在的主要问题以及区域干旱频率分析研究的3种途径。提出综合利用研究区域水文气象特性、干旱成因、旱情、旱灾,并结合前期的大气环流条件等信息来描述和识别干旱,重点开展对干旱特征变量的理论分布、干旱事件重现期公式和经验频率公式等基本理论的研究,关注区域干旱频率分析,注重对径流、土壤水、地下水和供水系统的干旱特性分析。  相似文献   

17.
崔曼仪  周刚  张大弘  张世强 《冰川冻土》2022,44(6):1898-1911
Under the background of climate warming, the occurrence time, frequency, intensity, and impact of snowmelt flood disasters have changed significantly. Thus, establishing a global snowmelt flood disaster database is particularly important for disaster risk management. With the help of a web crawler, and based on multiple data sources such as natural disaster databases, documents, books, government agency websites, and news media, this study collected relevant information of snowmelt floods and mixed floods and established standards for identifying snowmelt flood events and their disaster impacts based on data from the different sources. Following the screening, sorting, fusion, and integration of snowmelt flood events, a global snowmelt flood disaster dataset containing 579 pieces of data with strong pertinence and reliability was constructed. The temporal and spatial distribution characteristics of global snowmelt flood disasters from 1900 to 2020 were preliminarily analyzed. The results showed that the snowmelt floods were mainly distributed between 30° N and 60° N, with more mixed floods south of 50° N and more snowmelt floods north of 50° N. Spring was the period of highest incidence of snowmelt flood disasters, followed by winter, summer, and autumn, respectively. The snowmelt floods that occurred in spring, autumn, and winter were mainly at 40°~50° N, and the snowmelt floods that occurred in summer were mainly at 30°~40° N. Compared with the snowmelt floods, the mixed floods were more frequent and more destructive, and their frequency increased with climate warming. The results provide a scientific basis for risk prevention and loss assessment of global snowmelt flood disasters. © 2022 Science Press (China).  相似文献   

18.
This article investigates whether the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global terrestrial Drought Severity Index (DSI) had the capability of detecting regional drought over subtropical southwestern China. Monthly, remotely sensed DSI data with 0.05° spatial resolution were used to characterize the extent, duration, and severity of drought from 2000 to 2010. We reported that southwestern China suffered from incipient to extreme droughts from November 2009 to March 2010 (referred to as the “drought period”). The area affected by drought occupied approximately 74 % of the total area of the study region, in which a moderate drought, severe drought, and an extreme drought accounted for 20, 12.7, and 13.2 % of the total area, respectively; particularly in March 2010, droughts of severe and extreme intensity covered the largest areas of drought, which were 16.1 and 18.6 %, respectively. Spatially, eastern Yunnan, western Guizhou, and Guangxi suffered from persistent droughts whose intensities ranged from mild to extreme during the drought period. Pearson’s correlation analyses were performed between DSI and the in situ meteorological station-based Standardized Precipitation Index (SPI) for validating the monitoring results of the DSI. The results showed that the DSI corresponded favorably with the time scales of the SPI; meanwhile, the DSI showed its highest correlation (mean: r = 0.58) with a three-month SPI. Furthermore, similar spatial patterns and temporal variations were found between the DSI and the three-month SPI, as well as the agro-meteorological drought observation data, when monitoring drought. Our analysis suggests that the DSI can be used for near-real-time drought monitoring with fine resolution across subtropical southwestern China, or other similar regions, based solely on MODIS-derived evapotranspiration/potential evapotranspiration and Normalized Difference Vegetation Index data.  相似文献   

19.
Spatiotemporal variability of meteorological droughts in southeastern USA   总被引:1,自引:0,他引:1  
Droughts in the southeast USA have been linked to economic losses and intractable water conflicts. The region has witnessed several severe droughts events during the period from 1901 to 2005. In this study, spatiotemporal variability in meteorological drought characteristics in the southeast were analyzed using two different datasets by the means of standard precipitation index and standard precipitation evapotranspiration index for the period 1901–2005 for agricultural and non-agricultural seasons. The study periods were divided into three epochs 1901–1935, 1936–1970, and 1971–2005 and drought characteristics, in terms of severity, frequency, number, and trends were analyzed. Additionally, areal extent, drought severities and return periods associated with three severe drought years 1904, 1954, and 2000 were analyzed. Except for the state of Florida, results indicate decrease in drought severity during the recent epoch of 1970–2005 in the study domain. Trend analysis confirms that the study domain has become wetter over the last 105 years. Wetting trends were more prominent in the agricultural season. Additionally, droughts seem to have migrated from the western part of the study area encompassing the states of Alabama, Tennessee, Louisiana, and Mississippi to the Florida panhandle region during the recent epoch. Droughts exhibited higher spatiotemporal variability during the agricultural season compared to the non-agricultural seasons. Results also showed that early to mid-1950s experienced some of the most severe droughts in the study domain. Some of the drought events, such as the drought of 1954 and 2000, have been equivalent to a 100-year drought event in the southeast. The results from this study form the benchmark for studying the impacts of future climate change projections on meteorological droughts in the southeast.  相似文献   

20.
中国西北地区的干旱与旱灾——变化趋势与对策   总被引:16,自引:1,他引:16  
干旱与水资源短缺是西北地区的基本环境特征。西北地区在气候变暖的背景下,区域降水量出现了明显的区域差异:西北西部的新疆地区,20世纪80年代以来降水量增加;西北东部大部分地区降水量持续减少,干旱、连旱趋势增加;黄河流域西北区域降水量减少,干旱化趋势最为显著。在气候干旱化增强的背景下,新疆地区总体上经过70年代的枯水期后,在80年代中期开始较大范围内径流量呈现增加趋势;河西东部、西北东部的黄河流域等地区,70年代以来径流持续减少,大部分河流枯水频率在78%以上,水文干旱化趋势显著。水资源的开发利用、水土保持以及土地利用等人类活动使得西北地区水文干旱进一步加剧。干旱是西北地区最为严重的自然灾害之一,受干旱化气候和水文变化趋势的影响,黄河流域和内陆流域干旱灾害不断加剧,近50a干旱灾害受灾面积急剧扩张,旱灾造成的农业粮食损失不断增加。从创新水资源开发利用途径与管理等角度,提出了提高气候变化的地区适应性和区域水-经济系统旱灾抵御能力的对策与建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号