首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large amplitude Ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons and two-temperature distribution of electrons are investigated. Using pseudo-potential approach, an energy integral equation for the system has been derived which encompasses complete nonlinearity for the plasma system. The existence region of the solitons is analyzed numerically. It is found that for selected set of plasma parameters, both rarefactive and compressive solitons exist in the electron-positron-ion (EPI) plasma. It is also found that due to finite positron concentration both subsonic and supersonic rarefactive soliton exist in EPI plasma. An increase in finite ion temperature ratio decreases the amplitude of the rarefactive solitons. In the case of small amplitude, it is found that there exist supersonic compressive as well as rarefactive solitons simultaneously. The amplitude of the solitons decreases with increase in ion temperature ratio (σ), however an increase in positron concentration (α) and temperature ratio of positron to electrons (γ) increases the amplitude of the solitons. Effect of various plasma parameters on the characteristics of the solitons are discussed in detail. The results of the investigation may be helpful to understand the nonlinear structures in auroral plasma, pulsars and magnetospheric astrophysical environment as well as laboratory plasmas.  相似文献   

2.
In the new investigation of dust-ion acoustic (DIA) waves with negative dust charges and weakly relativistic ions and electrons in the plasma, compressive and rarefactive DIA solitons of interesting characters are established through the Korteweg-de Vries (KdV) equation. Eventually, the amplitudes of the compressive DIA solitons are found to be constant at some critical temperature ratio α c (electron to ion temperature ratio) identifying some critical dust charge Z dc . It is predicted, that the reception of dust charges by the plasma particles at the variation of temperature starts functioning to the growth of compressive soliton’s constant stage of amplitude after the state of critical α c . The identification of critical dust charge (Z dc ) which is found to be very great for solitons of constant amplitudes becomes feasible for very small dust to ion density ratio (σ). But it can be achieved, we observe, due to the relativistic increase in ion-density as in mass, which is also a salient feature of this investigation.  相似文献   

3.
Korteweg-de Vries (KdV) equation for electrostatic ion acoustic wave in a three component plasma containing positive and negative ions along with the nonextensive electrons is derived. Fast and slow ion acoustic modes which propagate with different velocities are excited. The effects of variation of quantities like q (nonextensive parameter), Q (mass ratio of positive to negative ion), μ (electron to positive ion number density ratio), θ i (positive ion to electron temperature ratio) and θ n (negative ion to electron temperature ratio) have been presented for fast and slow ion acoustic modes. Both compressive and rarefactive solitons are observed. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as on nonextensive electron parameter.  相似文献   

4.
Using the extended Poincaré-Lighthill-Kuo (PLK) reductive perturbation method, which incorporates the phase-shift variations, it is shown that common features on propagation and head-on collisions of ion-acoustic waves exist for a magnetized plasmas of different inertial-less particle distributions. For instance it is remarked that, the soliton amplitude is always independent of magnetic field strength while strictly depends on its angle regarding the propagation direction. Both types of solitons (compressive or rarefactive) are shown to exist which are defined through the critical angle γ=π/2 or other critical values depending on plasma fractional parameters. These critical plasma parameter values also define the sign of head-on collision phase shift. Furthermore, it is proved that for a given set of plasma parameters there is always a relative angle of propagation regarding to that of the magnetic-field for which the soliton width is maximum. Current findings apply to a wide range of magnetized plasmas including those containing background dust ingredients or two-temperature inertial-less particles and may be used to study laboratory or astrophysical magnetoplasmas.  相似文献   

5.
Ion-acoustic solitary waves in a warm, magnetized plasma with electron inertia have been investigated through Sagdeev pseudopotential method. It has been established the existence of both compressive supersonic solitons, and rarefactive subsonic and supersonic solitons within the parametric domains. The effect of the external magnetic field for generation of the supersonic compressive solitons of constant amplitudes appears to be passive after some critical direction of propagation of the wave. However, up to the critical direction of propagation, the magnetic resistance is found to be quite active to drastically reduce the soliton amplitudes. The generation of rarefactive solitons in this warm magnetized plasma is rather more feasible to be supersonic without electron inertia.  相似文献   

6.
Linear and nonlinear analysis are presented for an electronegative dusty plasma system. Linear analysis shows that the dispersive nature of the plasma system changes considerably due to the presence of nonthermal q-nonextensive distributed electrons. The presence of both compressive and rarefactive Sagdeev solitons is investigated and shown that the addition of even a small population of dust particles will significantly modify the large amplitude Sagdeev solitons. The coexistence of both compressive and rarefactive solitons for a certain set of parameters is also noticed in such system. The effect of variation of entropic index q, θ i (ratio of positive ion temperature to electron temperature), θ n (ratio of negative ion temperature to electron temperature) and dust particles concentration (R) is elaborated with the help of suitable parameters.  相似文献   

7.
Ion-acoustic (IA) solitons in a collisionless plasma consisting of positive and negative ions and superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries (K-dV) and modified Korteweg-de Vries (mK-dV) equations. It is found that both compressive and rarefactive solitons can be propagated in this system. Also it is shown that at critical concentration of positive ions mK-dV solitons coexist. The effects of spectral index kappa, positive to negative ion density ratio and mass ratio of positive to negative ions on IA solitons structure are also discussed.  相似文献   

8.
The nonlinear propagation of ion acoustic waves in ideal plasmas consisting of degenerate electrons and positrons, and isothermal ions is investigated. The Korteweg de Vries (K-dV) equation that contains the lowest order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (K-dV type) equation that accounts for the higher order nonlinearity and the dispersion relation is obtained. The stationary wave solution for these equations has been found using the renormalization method. Also, the effects of electrons and positrons densities and ion temperature on the amplitude and width of solitary waves are investigated, numerically. It is seen that higher order corrections significantly change the properties of the K-dV solitons. Also, it is found that both compressive and rarefactive solitary waves can be propagated in such plasma system.  相似文献   

9.
Propagation of small but finite amplitude ion acoustic solitons and double layers are investigated in electron–positron–ion plasmas in presence of highly negatively charged impurities or dust. The presence of negatively charged dust particulates can result in existence of two critical concentrations of ion–electron density ratio α. One of them α D decides the existence of double layers, whereas the other one α R decides the nature of the solitons and double layers. The system supports both compressive and rarefactive solitons as well as double layers. The parameter regimes of transitions from compressive to rarefactive solitons and double layers are also specified.  相似文献   

10.
Existence of compressive relativistic solitons is established in an arbitrary ξ-direction, inclining at an angle to the direction of the weak magnetic field (ω pi ω Bi ) in this plasma compound with ions, relativistic electrons and relativistic electron beams. It is observed that the absolute linear growth of amplitudes of compressive solitons is due to inactive role of the weak magnetic field and the initial streaming speeds of relativistic electrons, electron beams, and Q b (ion mass to electron beam mass). Besides, the small initial streaming of electrons is found to be responsible to generate relatively high amplitude compressive solitons. The non-relativistic ions in the background plasma, but in absence of electron-beam drift and in presence of weak magnetic field are the causing effect of interest for the smooth growth of soliton amplitudes in this model of plasma.  相似文献   

11.
In the two component relativistic plasmas subject to pressure variation of adiabatic electrons and isothermal ions, both compressive and rarefactive KdV solitons are established in a quite different physical plasma model. It is desirable to define c s in a new way to substantiate the validity of the model under relativistic effects. The corresponding mathematical condition is also determined, which is a new report of this kind. It is also interesting to report that the relativistic rarefactive solitons cease to exist below some critical ion initial streaming speed v i0 for a fixed temperature α and electron streaming speed v e0. Besides, higher initial flux v i0 of ions under constant temperature is observed to generate higher speed v i at the passage of time which causes to increase (in relativistic sense) its mass diminishing thereby the growth of soliton amplitudes.  相似文献   

12.
Existence of both subsonic and supersonic compressive solitons of interesting characters is established in this magnetized plasma model with non relativistic ions and relativistic electrons. The small supersonic range for the generation of compressive solitons is shown to confine near the vicinity of the direction of the magnetic field. It is predicted that the relativistic variation of electron’s mass is responsible for the expansion of Sagdeev potential to result increase in soliton’s amplitude and decrease in its width.  相似文献   

13.
Compressive solitons of low and high amplitudes are established in this weakly relativistic and magnetized plasma model. The assigned direction of soliton propagation to the direction of the magnetic field, supplemented by the corresponding ion initial streaming speed (v 0) determines the lower limit of the initial electron streaming speed (v 0) in its interval of existence to produce solitons for a given value of the speed of light c. Further, lower limit of c specified by the corresponding energy (or temperature) to yield relativistic compressive solitons is also predicated. Interestingly, the increased initial streaming speed of electrons is found to play less effective role in the steepening growth of amplitudes of compressive solitons due to mode one than those corresponding to the mode two.  相似文献   

14.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion acoustic (IA) waves in a magnetized plasma. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron nonextensivity decreases the phase velocities of both two modes. Also obliqueness leads to increase of separation between two modes. The nonlinear evolution of IA solitary waves is governed by an energy-like equation. The influence of electron nonextensivity, obliqueness and electron population on the existence domain of solitary waves and the soliton characteristics are examined. It is shown that the existence domain of the IA soliton and its profile is significantly depended on the deviation of electrons from thermodynamic equilibrium and obliqueness. Interestingly, the present model supports compressive as well as rarefactive IA solitary waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive and magnetized plasma can exist; like instellar plasma stellar polytropes, solar neutrino problem, peculiar velocities of galaxy clusters, dark-matter halos, protoneutron stars, hadronic matter, quark-gluon plasma, and magnetosphere, etc.  相似文献   

15.
Solitons and shocks are addressed in a pair ion plasma in the presence of a kappa distribution. The dissipation is taken care of through the kinematic viscosity of both positive and negative ions in the plasma. The Kadomtsev–Petviashvili–Burger (KPB) equation is derived using the small amplitude expansion method. The Abel equation is obtained from the KPB equation and a solution is obtained by using the factorization method. The effect of the parameters κ and β (temperature ratio of ion species) is observed. Analytically we can find both solitons and shocks. The change of profile from soliton to shocks is shown in the figures. This study may be of wide relevance for the study of the formation of shocks and solitons in laboratory-produced pair ion plasmas.  相似文献   

16.
Large amplitude solitons are investigated in an electron-positron plasma consisting of a hot and cold component for each charged species. The existence (and amplitudes) of the solitons are studied as a function of plasma parameters such as particle number densities and temperatures. Both compressive and rarefactive solitons are found to occur. Possible applications to pulsar magnetospheres are discussed.Also attached to Plasma Physics Research Institute, University of Natal, Durban, South Africa.  相似文献   

17.
For an unmagnetized collisionless electron–positron–ion plasma, the effects of trapped and non-thermal electron distributions are incorporated in the study of arbitrary amplitude ion-acoustic solitary structures. Both highly and weakly analyses are examined by deriving an energy integral equation involving the Sagdeev potential for the large amplitude limit, and obtaining the non-linear partial-differential equations for the small but finite amplitude limit. It is shown that there exist ion-acoustic solitary waves with qualitatively different structures in a way that depend on the population of trapped and non-thermal electrons. In the presence of trapped electrons, fully non-linear analyses show that plasma can support only arbitrary amplitude compressive solitary waves. On the other hand, a consideration of the fast or non-thermal electron distribution provides the possibility of the coexistence of large amplitude compressive and rarefactive solitary waves, whereas both of them are decoupled in the small amplitude limit. It is found that the effects of such electron distributions and positron concentration change the maximum values of the Mach number and the amplitude for which solitary waves can exist. Furthermore, the non-thermally distributed electrons provide a KdV equation in the small amplitude limit, whereas the trapped electrons give rise to a modified KdV equation which exhibits a stronger non-linearity.  相似文献   

18.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of nonextensive electrons and thermal positrons are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries-Burgers’ (KdVB) equations for IAWs. The presence of nonextensive q-distributed electrons is shown to influence the solitary and shock waves. Furthermore, in the existence of ion kinematic viscosity, the shock wave structure appears. Also, the effects of nonextensivity of electrons, ion kinematic viscosities, positron concentration on the properties of ion acoustic shock waves (IASWs) are discussed in nonplanar geometry. It is found that both compressive and rarefactive type solitons or shock waves are obtained depending on the plasma parameter.  相似文献   

19.
Properties of propagation of large amplitude dust ion-acoustic solitary waves and double layers are investigated in electron-positron-ion plasma with highly charged negative dust. Sagdeev pseudopotential method has been used to derive the energy balance equation. The expression for the critical Mach number (lower/upper limit) for the existence of solitary structures has also been derived. The Sagdeev pseudopotential is a function of numbers of physical parameters such as ion temperature (σ), positron density (δ p ), dust density (δ d ) and electron to positron temperature ratio (β). These parameters significantly influence the properties of the solitary structures and double layers. Further it is found that both polarity (compressive and rarefactive) solitons and negative potential double layers are observed.  相似文献   

20.
The nonlinear propagation of ion-acoustic waves is studied in an unmagnetized collissionless electronegative plasma, whose constituents are the inertial warm positive/negative ions and q-distributed nonextensive electrons. The latter have strong impact on the linear dispersion relation. However, for nonlinear analysis, a reductive perturbation technique is employed to derive a Korteweg-de Vries (KdV) equation accounting for nonthermal electrons in nonplanar geometries. Numerically, the effects of various plasma parameters, such as, the nonextensive parameter (q), the negative-to-positive ion mass ratio (α), the electron-to-positive ion number density ratio (μ), the positive ion-to-electron temperature ratio (θ i ) and negative ion-to-electron temperature ratio (θ n ), have been examined on the nonplanar compressive/rarefactive fast ion-acoustic solitons (where the wave phase speed is taken as λ>1). The relevance of our findings involving plasma wave excitations should be useful both for space and laboratory plasmas, where two distinct groups of ions besides the electrons, are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号