首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A theoretical investigation is carried out for the nonlinear properties of small amplitude electron acoustic solitary waves (EAWs) in an unmagnetized collisionless plasma consisting of a cold electron fluid and hot electrons obeying κ velocity distribution, and stationary ions. The Korteweg de Vries (KdV) equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (KdV-type) equation that accounts for the higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting from higher-order perturbation theory has been found using the renormalization method. The effects of the spectral index κ and the higher-order corrections are found to significantly change the properties (viz. the amplitude, width, electric field ) of the EASWs. A comparison with the Viking Satellite observations in the dayside auroral zone are also discussed.  相似文献   

2.
Electron acoustic solitary waves in a collisionless plasma consisting of a cold electron fluid and non-thermal hot electrons are investigated by a direct analysis of the field equations. The Sagdeev potential is obtained in terms of electron acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the electron acoustic solitary waves as well as the parametric regime where the solitons can exist are very sensitive to the population of energetic non-thermal hot electrons. The soliton and double layer solutions are obtained as a small-amplitude approximation. The effect of non-thermal hot electrons is found to significantly change the properties of the electron acoustic solitary waves (EAWs). A comparison with the Viking Satellite observations in the day side auroral zone is also discussed.  相似文献   

3.
Nonlinear dynamics of electron-acoustic solitary waves in a magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons featuring Tsallis distribution, and stationary ions are examined. The nonlinear evolution equation (i.e., Zakharov–Kuznetsov (ZK) equation), governing the propagation of EAS waves in such plasma is derived and investigated analytically and numerically, for parameter regimes relevant to the dayside auroral zone. It is revealed that the amplitude, strength and nature of the nonlinear EAS waves are extremely sensitive to the degree of the hot electron nonextensivity. Furthermore, the obtained results are in good agreement with the observations made by the Viking satellite.  相似文献   

4.
Arbitrary amplitude electron acoustic (EA) solitary waves in a magnetized nonextensive plasma comprising of cool fluid electrons, hot nonextensive electrons, and immobile ions are investigated. The linear dispersion properties of EA waves are discussed. We find that the electron nonextensivity reduces the phase velocities of both modes in the linear regime: similarly the nonextensive electron population leads to decrease of the EA wave frequency. The Sagdeev pseudopotential analysis shows that an energy-like equation describes the nonlinear evolution of EA solitary waves in the present model. The effects of the obliqueness, electron nonextensivity, hot electron temperature, and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the boundary values of the permitted Mach number decreases with the nonextensive electron population, as well as with the electron nonextensivity index, q. It is also found that an increase in the electron nonextensivity index results in an increase of the soliton amplitude. A comparison with the Vikong Satellite observations in the dayside auroral zone is also taken into account.  相似文献   

5.
Nonlinear properties of the dust acoustic (DA) solitary waves in a dusty plasma consisting of negatively variable-charged dust particles, vortex-like distributed ions and two-temperature isothermal electrons are reported. A reductive perturbation theory has been used to derive a modified Korteweg-de Vries (mKdV) equation for the first-order perturbed potential and a linear inhomogeneous mKdV-type equation for the second-order perturbed potential. The renormalization method is used to obtain stationary solutions of these coupled equations. The modifications in the amplitude and width of the solitary wave structure due to the inclusion of two different types of isothermal electrons, external oblique magnetic field, higher-order nonlinearity, and vortex-like distributed ions are investigated. Also a method based on energy consideration was used to obtain the stability condition. Moreover, the numerical results are applied to investigate some nonlinear characteristics of the DA solitary waves.  相似文献   

6.
The nonlinear propagation of ion acoustic waves in ideal plasmas consisting of degenerate electrons and positrons, and isothermal ions is investigated. The Korteweg de Vries (K-dV) equation that contains the lowest order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (K-dV type) equation that accounts for the higher order nonlinearity and the dispersion relation is obtained. The stationary wave solution for these equations has been found using the renormalization method. Also, the effects of electrons and positrons densities and ion temperature on the amplitude and width of solitary waves are investigated, numerically. It is seen that higher order corrections significantly change the properties of the K-dV solitons. Also, it is found that both compressive and rarefactive solitary waves can be propagated in such plasma system.  相似文献   

7.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

8.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   

9.
The magnetic perturbation patterns in the polar cap and auroral zone regions are obtained for extremely quiet days using two different techniques. It is shown that the form of the equivalent current flow pattern is extremely sensitive to the level of quietness, and that even so-called quiet days are at times disturbed by substorm activity. Certain characteristic equivalent flow not typically observed during substorms is noted in the polar cap, and this flow appears to be associated with effects associated with polar cap perturbations discussed by Svalgaard (1973). As well a region of equatorward flow appears at high latitudes near the dawn meridian, which appears to be Hall current driven by an eastward electric field. The dayside sub-auroral zone is dominated by the Sq-current system, while the nightside shows no significant current flow in the absence of substorm activity.  相似文献   

10.
Isointensity contours of 630 nm auroral emission are traced into the magnetosphere, using two different empirical magnetic field models, the Mead-Fairfield model, and the Hedgecock-Thomas model. The auroral data are for a specific ISIS-II satellite pass, and so the starting points are expressed in geographic latitude and longitude coordinates, at a specific universal time. The magnetic field models are constructed from satellite magnetometer measurements, and those used correspond to magnetically quiet times. The projections are found to agree reasonably well with direct plasma measurements of the plasma sheet. The projections of the dayside contour connect to widely different regions of the magnetosphere, providing an interpretation that is consistent with observations of the dayside aurora. It is concluded that field line projections of the aurora into the magnetosphere using these models is a valid procedure, but only under quiet-time conditions.  相似文献   

11.
Our high latitude ionospheric model predicts the existence of a pronounced “dayside” trough in plasma concentration equatorward of the auroral oval in both the Northern and Southern Hemispheres for solar maximum, winter, and low geomagnetic activity conditions. The trough in the Southern Hemisphere is much deeper than that in the Northern Hemisphere, with the minimum trough density at 800 km being 2 × 103 cm−3 in the Southern Hemisphere and 104 cm−3 in the Northern Hemisphere. The dayside trough has a strong longitudinal (diurnal) dependence and appears between 11:00 and 19:00 U.T. in the Southern Hemisphere and between 02:00 and 08:00 U.T. in the Northern Hemisphere. This dayside trough is a result of the auroral oval moving to larger solar zenith angles at those universal times when the magnetic pole is on the antisunward side of the geographic pole. As the auroral ionization source moves to higher geographic latitudes, it leaves a region of declining photoionization on the dayside. For low convection speeds, the ionosphere decays and a dayside trough forms. The trough is deeper in the Southern Hemisphere than in the Northern Hemisphere because of the greater offset between the geomagnetic and geographic poles. Satellite data taken in both the Northern and Southern Hemispheres confirm the gross features of the dayside trough, including its strong longitudinal dependence, its depth, and the asymmetry between the Northern and Southern Hemisphere troughs.  相似文献   

12.
All-sky camera observations from two stations in the inner (northern) polar cap and an auroral zone station are combined with photometer records from the polar cap station Nord in a study of the brilliant auroral display following the ssc of the storm of 7 November 1970. This display is the large, poleward expanding bulge of a substorm triggered by the ssc. It is composed of brilliant discrete forms embedded in low-intensity diffuse electron and proton aurora. The poleward edge of the diffuse electron aurora is 5° north of the discrete auroras and 3° north of the proton aurora. The intensity of the discrete aurora varies as the strength of the auroral electrojet as shown by magnetograms from auroral zone stations. Succeeding the retreating display a subvisible low-energy electron precipitation, which may be identified as the polar squall (Winningham and Heikkila, 1974) is observed over the polar cap during the main phase of the storm.In the early morning sector already existing diffuse auroras broaden towards the equator from the time of the ssc and at least during the following half hour.Ssc-triggered displays have been found (Feldstein, 1959) to withdraw from the inner polar cap as the initial (positive H) phase of the storm ends. A comparison of the records from seven low-latitude stations shows that during this particular storm the positive phase appears to be composed by two overlapping disturbances, i.e. the proper initial phase, which is generally thought to be due to compression of the inner magnetosphere and a series of positive bays accompanying the negative bays in auroral latitudes. These positive bays are observable over a great range of longitudes with a maximum of amplitude near midnight. As judged from the dayside magnetograms the initial (compression) phase ends at an early stage of the substorm. The observed coincidence between the withdrawal of the display and the cessation of the positive H phase of the storm is a consequence of the fact that the second component—the positive bays—and the auroral display over the polar cap are both signatures of the substorm activity.  相似文献   

13.
《Planetary and Space Science》2007,55(14):2192-2202
Nonlinear propagating dust-acoustic solitary waves (DASWs) in a warm magnetized dusty plasma containing different size and mass negatively charged dust particles, isothermal electrons, high- and low-temperature ions are investigated. For this purpose, a reasonable normalization of the hydrodynamic and Poisson equations is used to derive the Zakharov–Kuznetsov (ZK) equation for the first-order perturbed potential. As the wave amplitude increases, the width and the velocity of the solitons deviate from the prediction of the ZK equation, i.e., the breakdown of the ZK approximation. To describe the soliton of larger amplitude, a linear inhomogeneous Zakharov-Kuznetsov-type (ZK-type) equation for the second-order perturbed potential is derived. Stationary solutions of both equations are obtained using the renormalization method. Numerically, the effect of power law distribution on the higher-order corrections is examined. It is found that the soliton amplitude in case of power law distribution is smaller than that of monosized dust grains. The higher-order corrections play a role to reduce the strength of the nonlinearity for power law distribution case. The relevance of the present investigation to Saturn's F-ring and laboratory experiment is discussed.  相似文献   

14.
A theoretical investigation has been made on obliquely propagating dust-ion-acoustic solitary waves (DIASWs) in magnetized dusty electronegative plasma containing Boltzmann electrons, trapped negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The reductive perturbation method has been employed to derive the modified Zakharov-Kuznetsov (MZK) equation which admits solitary wave solution under certain conditions. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation-expansion technique. The basic properties (speed, amplitude, width, instability, etc.) of small but finite amplitude DIASWs are significantly modified by the effects of external magnetic field, obliqueness, polarity of dust, and trapped negative ions. The implications of our results in space and laboratory plasmas are briefly discussed.  相似文献   

15.
The relationship between sudden geomagnetic field changes in the nightside cusp region and impulsive electron precipitation events in the auroral zone is investigated. The investigations are based on magnetic field measurements from the spacecraft Explorer 35, Explorer 33 and OGO-5 and on X-ray measurements with balloon-borne instruments from Kiruna/Sweden. The sudden field changes are characterized by a decrease of the field strength and a rotation of the field direction. The precipitation events represent strong flux increases within a few minutes. The field changes were accompanied by impulsive precipitation not only in the midnight sector but also on the dayside. They can be regarded as a manifestation of the unsteady magnetospheric processes during the expansion phase. Whereas both phenomena occurred simultaneously on the nightside, the increase of precipitation was delayed by ca. 5 min on the dayside. It is assumed that the simultaneous occurrence on the nightside can be related to the formation of a neutral line with a considerable length in dawn-dusk-direction. Mechanisms are also discussed which could be responsible for the time delay on the dayside.  相似文献   

16.
The purpose of the present work is to investigate some nonlinear properties of the dust ion-acoustic (DIA) solitary waves in a four-component hot-magnetized dusty plasma consisting of charged dust grains, positively charged ions and two-temperature isothermal electrons. Applying a reductive perturbation theory, a nonlinear Korteweg-de Vries (KdV) equation for the first-order perturbed potential and a linear inhomogeneous KdV-type equation for the second-order perturbed potentials are derived. Stationary solutions of these coupled equations are obtained using a renormalization method. A method based on energy consideration is used to obtain a condition for stable solitons. The effects of two different types of isothermal electrons, external oblique magnetic field, concentration of negatively (positively) charged dust grains and higher-order nonlinearity on the nature of the DIA solitary waves are discussed. The numerical results are applied to Saturn's E-ring.  相似文献   

17.
We present numerical simulations of kinetic Alfvén waves (KAWs) and inertial Alfvén waves (IAWs) applicable to the solar wind, the solar corona, and the auroral regions, respectively, leading to the formation of coherent magnetic structures when the nonlinearity arises from ponderomotive effects and Joule heating. The nonlinear dynamical equation satisfies the modified nonlinear Schrödinger equation. The effect of nonlinear coupling between the main KAW/IAW and the perturbation, producing filamentary structures of the magnetic field, has been studied. Scalings in the spectral index of the power spectrum at different times have been calculated. These filamentary structures can act as a source for particle acceleration by wave?–?particle interaction because the KAWs/IAWs are mixed modes and Landau damping is possible.  相似文献   

18.
The average auroral zone electric field pattern has been studied to determine whether such fields can, as has been suggested, drive the super-rotation of the upper atmosphere. It is shown that the local time averaged meridional electric field is small and, in fact, poleward, which would tend to drive a prevailing westerly wind. When averaged only over the dayside, where ion drag should be most important due to the higher ion density, the poleward average is even more pronounced. Thus at high latitudes ion drag acts to drive a prevailing neutral wind to the west. Model calculations indicate that without including electric fields the prevailing wind at mid-latitudes should be to the west, due to higher ion drag on the dayside. Including the present results will increase ion drag on the dayside and further enhance this effect. These results thus suggest that at middle and high latitudes the upper atmosphere does not superrotate.  相似文献   

19.
Atmospheric expansion through Joule heating by horizontal electric fields   总被引:1,自引:0,他引:1  
Incoherent scatter measurements made along a magnetic field line into aurora during a period of high electric field in the recovery phase of a substorm show (1) considerably increased electron densities well above the normal F-region maximum, and (2) field-aligned plasma drifts that increase with altitude. A model invoking atmospheric expansion through Joule heating by the horizontal electric field driving the auroral electrojet is used to explain the observations. From this study it is concluded that during magnetically disturbed periods (1) Joule heating by the auroral electrojet raises the neutral temperature and density in the auroral zone ionosphere at F-region heights, (2) ionization formed by the aurora is transported upward by the expanding atmosphere, at times producing an appreciable increase in lower exospheric plasma densities on the field lines containing the aurora, and (3) combined satellite, radar, and optical observations during periods of aurora and high electric field could provide measured F-region collision frequencies.  相似文献   

20.
The lines of force of the geomagnetic field at various latitudes and longitudes in the northern hemisphere are approximately traced to their intersections with the earth's surface in the southern hemisphere, using an electronic computer and the first nine Gauss coefficients. Those lines leaving the average northern auroral zone are traced to their intersection of the geomagnetic field with the earth's surface. These points of intersection are found to be very nearly at the average southern auroral zone deduced from auroral observations and from magnetic measurements of disturbance. It is concluded, therefore, that the geomagnetic field has stability and a simple character even at distances as great as about 6 earth radii above the earth, measured in the equatorial plane, even during auroral displays. It is also concluded that solar streams at such times do not seriously distort the field lines connecting the auroral zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号