首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The estimates of quiescent and flare time temperatures of soft X-ray emitting regions on the Sun are obtained for flares observed during March–August 1967 from X-ray observations in two soft X-ray bands, 2–12 Å (Explorer-33 data) and 8–12 Å (OSO-3 data). It is concluded that hot coronal condensation, originally at 2–3 × 106 K, is raised to the temperature of about 4–5 × 106 K and is responsible for soft X-ray enhancement.On leave from Physics Department, College of Engineering, Aurangabad, India.  相似文献   

2.
Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.  相似文献   

3.
A review of light curves of known x-ray novae made it possible to identify criteria by which x-ray nova candidates were selected among old novae: amplitude of optical outburst 7–10 m, shape of light curve during the outburst with a temporary fading by 2–3m lasting up to four days and an abrupt final fading from the 6m level (relative to the quiet state). We identified LS And, AL Com, V592 Her, and HV Vir as x-ray nova candidates. Recurrent outbursts should be expected for the first and third stars. Less reliable candidates are V341 Nor, V787 Sgr, and V719 Sco. A possible recurrent nova candidate may be V1330 Cyg. Translated from Astrofizika, Vol. 42, No. 3, pp. 359–364, July–September, 1999.  相似文献   

4.
T. Landscheidt 《Solar physics》1986,107(1):195-199
The Blackman-Tukey power spectrum of flare generated X-ray bursts X1 observed from 1970 to 1982 by satellite instrumentation (SOLRAD/SMS/GOES) shows prominent peaks at 156, 4.8, 2.8, and 1.1 months. According to a statistical test of the significance of the deviation of these peaks from Markov red noise, the peaks at 2.8 and 1.1 months are significant at the 99% confidence level while the peak at 4.8 months reaches the 95% level. A replication by means of the maximum entropy spectral analysis (MEM) yields the same prominent peaks at the same frequencies.  相似文献   

5.
A study is made of several ATM flares, to investigate the effect of soft X-ray heating at chromospheric levels. It is shown that the amount of energy released in Ly and Lyman continuum emissions, and their spatial and temporal behavior, in compact flares correspond to what is expected from model calculations. An additional source of heating, which could be heat conduction, has to be postulated to explain ribbons of enhanced L and C ii 1336 Å emission in large flares. As expected, the effect of X-ray heating is more important in small compact flares than in large ones.  相似文献   

6.
A comprehensive survey of Skylab S-054 soft X-ray images was performed to investigate the characteristics of coronal enhancements preceding solar flares. A search interval of 30 min before flare onset was used. A control sample was developed and tests of the statistical results performed. X-ray images with preflare enhancements were compared with high resolution H images and photospheric magnetograms.The results are as follows: preflare X-ray enhancements were found in a statistically significant number of the preflare intervals, and consisted of one to three loops, kernels or sinuous features per interval. Typically, the preflare feature was not at the flare site and did not reach flare brightness. There was no systematically observed time within the preflare interval for the preflare events to appear and no correlation of preflare event characteristics with the subsequent flare energy. Gas pressures of several preflare features were calculated to be on the order of several dyne cm–2, typical of active region loops, not flares. These results suggest that observations with both high spatial resolution and low coronal temperature sensitivity are required to detect these small, low pressure enhancements that preceded the smaller flares typical of the Skylab epoch. H brightenings were associated with nearly all of the preflare X-ray enhancements. Changing H absorption features in the form of surges or filament activations were observed in about half of the cases. These results do not provide observational support for models which involve preheating of the flare loop, but they are consistent with some current sheet models which invoke the brightening of structures displaced from the flare site tens of min before onset.  相似文献   

7.
The calculations of Compton backscattering from the solar surface of flare X-rays performed by Tomblin (1972) are extended to higher energies. It is shown that the effect is even more pronounced in the 40 keV region and that it can lead to substantial corrections to the observed X-ray spectra.  相似文献   

8.
N. Vilmer 《Solar physics》1987,111(1):207-223
Solar hard X-ray emission is one of the most direct diagnostics of accelerated particles during solar flares. In this review, the current understanding of hard X-ray emission processes is discussed: first the different emission mechanisms (in particular inverse Compton radiation, energetic ion or electron bremsstrahlung) are presented and the plausibility of each of these mechanisms is discussed. Then, different types of hard X-ray models (thermal or non-thermal, homogeneous or inhomogeneous emission regions) are presented together with the comparison of their predictions with X-ray observations (spectral, spatial and temporal informations - directivity and polarization).Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

9.
Data obtained from a proportional counter on OSO-5 are examined to study variations in emission from individual solar active regions within the waveband 0.3–0.9 nm. Flux levels are highly variable, even from the areas having a low mean emission, because increases characteristic of X-ray flares occur most of the time. It is usual to assume that the coronal levels above a plage region are heated by a fairly continuous incident energy flux (perhaps waves), while impulsive effects associated with flares add to this over localised areas. The data given here indicate that the impulsive mechanism is probably the more important in producing the total soft X-ray flux from an active region. There is also reason to believe that many of the small flares observed are not restricted to particularly localised areas. They are of the gradual rise and fall variety which probably have an extended spatial structure. It seems possible that flare heating might account for almost the entire X-ray emission throughout the active region.  相似文献   

10.
We present the results of a search for fast spikes in 5483 hard X-ray solar flares as observed with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission (SMM). Hundreds of fast spikes with durations of less than 1 second have been detected at time resolutions of 128 ms and 10 ms. Fast spikes have been detected with rise and decay times as short as 20 ms and with widths as short at 45 ms that represent the fastest hard X-ray variations yet seen from the Sun. The observations of such fast variations place new constraints on the physical nature of the source.  相似文献   

11.
Soft X-ray flare data in the wavelength range 2.6–10 Å are used to examine the time variation of emission measure and electron temperature. The thermal plasma parameters were derived according to a two-temperature model proposed by Herring and Craig (1973). Estimates of electron density and source volume are made by assuming conductive and radiative cooling mechanisms. It is suggested that the present observations imply a multi-thermal interpretation of the soft X-ray flare.  相似文献   

12.
We present the study of 20 solar flares observed by “Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented. We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.  相似文献   

13.
The data from OGO-5 and OSO-7 X-ray experiments have been compared with optical data from six chromospheric flares with filament disruption associated with slow thermal X-ray bursts. Filament activation accompanied by a slight X-ray enhancement precedes the first evidence of Hα flare by a few minutes. Rapid increase of the soft X-ray flux accompanies the phase of fastest expansion of the filament. Plateau or slow decay phases in the X-ray flux are associated with slowing and termination of filament expansion. The soft X-ray flux increases as F~(A + Bh) h, where h is the height of the disrupted prominence at any given time and A and B are constants. We suggest that the soft X-ray emission originates from a growing shell of roughly constant thickness of high-temperature plasma due to the compression of the coronal gas by the expanding prominence.  相似文献   

14.
Ground-based optical observations coordinated with Yohkoh/SXT X-ray observations of an old, disintegrating bipolar active region AR NOAA 7493 (May 1, 1993) provided a multiwavelength data base to study a flaring active region X-ray bright point (XBP) of about 16 hr lifetime, and the activity related to it in different layers of the solar atmosphere. The XBP appeared to be related to a new minor bipole of about 1020 Mx. Superposed on a global evolution of soft X-ray brightness, the XBP displayed changes of brightness, lasting for 1–10 min. During the brightenings the XBP apparently had a spatial structure, which was (tiny) loop-like rather than point-like. The X-ray brightenings were correlated with chromospheric activity: (i) brightenings of underlying chromospheric faculae, and (ii) appearance of strong turbulent velocities in the arch filament system. We propose that the XBP brightenings were due to reconnection of the magnetic field lines (sketched in 3D) between the new bipole and a pre-existing plage field induced by the motion of one of the new pores (v = 0.2 km s–1) towards the plage, and that the XBP itself was a reconnected hot loop between them.  相似文献   

15.
G. M. Simnett 《Solar physics》1983,86(1-2):289-299
High resolution X-ray images are used to study the temperature structure and evolution of two spatially resolved, but compact, solar flares. Both flares developed within a magnetic loop whose footpoints were separated by typically 15000 km, and involved primary energy release at one footpoint. This was followed by transfer of chromospheric material into and around the loop. The flares involved total energies differing by over an order of magnitude, and they follow different evolutionary paths because of this.  相似文献   

16.
Observations using the Bent Crystal Spectrometer instrument on the Solar Maximum Mission show that turbulence and blue-shifted motions are characteristic of the soft X-ray plasma during the impulsive phase of flares, and are coincident with the hard X-ray bursts observed by the Hard X-ray Burst Spectrometer. A method for analysing the Ca xix and Fe xxv spectra characteristic of the impulsive phase is presented. Non-thermal widths and blue-shifted components in the spectral lines of Ca xix and Fe xxv indicate the presence of turbulent velocities exceeding 100 km s-1 and upward motions of 300–400 km s-1.The April 10, May 9, and June 29, 1980 flares are studied. Detailed study of the geometry of the region, inferred from the Flat Crystal Spectrometer measurements and the image of the flare detected by the Hard X-ray Imaging Spectrometer, shows that the April 10 flare has two separated footpoints bright in hard X-rays. Plasma heated to temperatures greater than 107 K rises from the footpoints. During the three minutes in which the evaporation process occurs an energy of 3.7 × 1030 ergs is deposited in the loop. At the end of the evaporation process, the total energy observed in the loop reaches its maximum value of 3 × 1030 ergs. This is consistent with the above figures, allowing for loss by radiation and conduction. Thus the energy input due to the blue-shifted plasma flowing into the flaring loop through the footpoints can account for the thermal and turbulent energy accumulated in this region during the impulsive phase.On leave from Torino University, Italy.  相似文献   

17.
An attempt has been made in the present work to reveal the directivity of solar non-thermal X-ray emission using the data obtained from the Prognoz and Explorer satellites. The frequency of occurrence of X-ray bursts and the mean intensities of the emission are studied as a function of distance from the central meridian. The most complete statistics have been obtained for the 4–24 keV X-ray bursts for the period 1970–1973. The X-ray burst frequency of occurrence normalized to the corresponding H flare frequency increases towards the solar limb. During the studied period this trend is more pronounced to the east than to the west. Distributions of the mean intensities of X-ray bursts are very similar to those of the frequency of occurrence of X-ray bursts; the effect is more noticeable for the low intensity bursts. The effect of the east-west asymmetry for H flares has been found to vary in magnitude and direction during the 20th solar activity cycle.  相似文献   

18.
We have applied detailed theories of gyro-synchrotron emission and absorption in a magnetoactive plasma, X-ray production by the bremsstrahlung of non-thermal electrons on ambient hydrogen, and electron relaxation in a partially ionized and magnetized gas to the solar flare burst phenomenon. The hard X-ray and microwave bursts are shown to be consistent with a single source of non-thermal electrons, where both emissions arise from electrons with energies < mc 2. Further-more, the experimental X-ray and microwave data allow us to deduce the properties of the electron distribution, and the values of the ambient magnetic field, the hydrogen density, and the size of the emitting region. The proposed model, although derived mostly from observations of the 7 July 1966 flare, is shown to be representative of this type of event.NAS-NRC Resident Research Associate.  相似文献   

19.
20.
We compared the microwave bursts with short timescale fine structure observed at 2.84 GHZ at Beijing Astronomical Observatory with the hard X-ry bursts (HXB) observed by the YOHKOH satellite during the period 1991 Oct–1992 Dec, and found that of the 20 microwave events, 12 had HXB counterparts. For the typical event of 1992-06-07, we analyzed the common quasi-period oscillations on the order of 102 s and calculated the parameters of the source region, together with a brief discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号