首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
We analyze the directions of the arrival of cosmic rays with energies E 0≥3×1018 eV and zenith angles θ≤45° recorded by the Yakutsk extensive air shower (EAS) facility during 1974–2000. They are shown to have a small-scale structure with scale sizes of 5°–10°. Enhanced particle fluxes compared to the expected levels for random distributions at (4–5)σ are observed from the Galactic and Supergalactic planes.  相似文献   

3.
The energy spectra of primary cosmic rays were studied in the energy interval 150 to 450 MeV/nucl by using balloon-borne cellulose-nitrate solid-state plastic detector. Effects of solar modulation were studied using the theoretical spectrum ofH 1 nuclei near the solar minimum in 1964 as the demodulated spectrum. The ‘force-field’ potential which fit the experimental results was estimated to be 270 MeV/nucl.  相似文献   

4.
The Boltzmann kinetic equation is analyzed in the MHD approximation. This analysis requires an explicit expression for the collision integral F c. In the classical theory, F c=?vf μ (1) Ωμ, where f μ (1) is the first spherical harmonic in the Galactic-cosmic-ray (GCR) distribution, Ωμ are the components of a unit particle velocity vector, and the frequency ν of collisions between GCRs and interplanetary magnetic-field nonuniformities is assumed to be a scalar. The assumption that νij is a tensor (which is the result of anisotropy in the interplanetary medium) distinguishes this study from others. Since the anisotropic GCR effects in the heliomagnetosphere are marginal, the nondiagonal elements of tensor νij were set equal to zero. Our analysis has yielded the diffusion-tensor components D , and D A, which are expressed in terms of interplanetary parameters. The energy dependencies of D , and D A are in good agreement with the experimental data and calculations by other authors.  相似文献   

5.
We discuss the possibility of accurately estimating the source number density of ultra-high-energy cosmic rays (UHECRs) using small-scale anisotropy in their arrival distribution. The arrival distribution has information on their source and source distribution. We calculate the propagation of UHE protons in a structured extragalactic magnetic field (EGMF) and simulate their arrival distribution at the Earth using our previously developed method. The source number density that can best reproduce observational results by Akeno Giant Air Shower Array is estimated at about 10−5 Mpc−3 in a simple source model. Despite having large uncertainties of about one order of magnitude, due to small number of observed events in current status, we find that more detection of UHECRs in the Auger era can sufficiently decrease this so that the source number density can be more robustly estimated. Two hundred event observation above 4 × 1019 eV in a hemisphere can discriminate between 10−5 and 10−6 Mpc−3. Number of events to discriminate between 10−4 and 10−5 Mpc−3 is dependent on EGMF strength. We also discuss the same in another source model in this paper.  相似文献   

6.
One of the most-outstanding problems in the gravitational collapse scenario of early structure formation is the cooling of primordial gas to allow for small-mass objects to form. As the neutral primordial gas is a poor radiator at temperatures   T ≤ 104 K  , molecular hydrogen is needed for further cooling down to temperatures   T ∼ 100 K  . The formation of molecular hydrogen is catalyzed by the presence of free electrons, which could be provided by the ionization due to an early population of cosmic rays (CRs). In order to investigate this possibility, we developed a code to study the effects of ionizing CRs on the thermal and chemical evolution of primordial gas. We found that CRs can provide enough free electrons needed for the formation of molecular hydrogen, and therefore can increase the cooling ability of such primordial gas under following conditions. A dissociating photon flux with   F < 10−18 erg cm−2 Hz−1 s−1  , initial temperature of the gas  ∼103 K  , total gas number densities   n ≥ 1 cm−3  , and cosmic-ray sources with     .  相似文献   

7.
The presence of nearby discrete cosmic ray (CR) sources can lead to many interesting effects on the observed properties of CRs. In this paper, we study about the possible effects on the CR primary and secondary spectra and also the subsequent effects on the CR secondary-to-primary ratios. For the study, we assume that CRs undergo diffusive propagation in the Galaxy and we neglect the effect of convection, energy losses and reacceleration. In our model, we assume that there exists a uniform and continuous distribution of CR sources in the Galaxy generating a stationary CR background at the Earth. In addition, we also consider the existence of some nearby sources which inject CRs in a discrete space–time model. Assuming a constant CR source power throughout the Galaxy, our study has found that the presence of nearby supernova remnants (SNRs) produces noticeable variations in the primary fluxes mainly above ∼100 GeV n−1, if CRs are assumed to be released instantaneously after the supernova explosion. The variation reaches a value of ∼45 per cent at around 105 GeV n−1. Respect to earlier studies, the variation in the case of the secondaries is found to be almost negligible. We also discuss about the possible effects of the different particle release times from the SNRs. For the particle release time of ∼105 yr, predicted by the diffusive shock acceleration theories in SNRs, we have found that the presence of the nearby SNRs hardly produces any significant effects on the CRs at the Earth.  相似文献   

8.
We present results of simulations performed with the Geant4 software code of the effects of Galactic Cosmic Ray impacts on the photoconductor arrays of the PACS instrument. This instrument is part of the ESA-Herschel payload, which will be launched in 2008 and will operate at the Lagrangian L2 point of the Sun-Earth system. Both the Satellite plus the cryostat (the shield) and the detector act as source of secondary events, affecting the detector performance. Secondary event rates originated within the detector and from the shield are of comparable intensity. The impacts deposit energy on each photoconductor pixel but do not affect the behaviour of nearby pixels. These latter are hit with a probability always lower than 7%. The energy deposited produces a spike which can be hundreds times larger than the noise. We then compare our simulations with proton irradiation tests carried out for one of the detector modules and follow the detector behaviour under ‘real’ conditions.  相似文献   

9.
We propose a model for the particle acceleration to energy E≈1021 eV in Seyfert galactic nuclei. The model is based on the theory of active galactic nuclei by Vilkoviskij et al. (1999). The acceleration takes place in hot spots of relativistic jets, which decay in a dense stellar kernel at a distance of 1–3 pc from the center. The maximum energy and chemical composition of the accelerated particles depend on the jet magnetic-field strength. Fe nuclei acquire the largest energy, E≈8×1020 eV, if the jet field strength is B≈16 G. At a field strength B~5–40 G, the nuclei with Z≥10 acquire energy E≥2×1020 eV; the lighter nuclei are accelerated to E≤1020 eV. In a field B~1000 G, only the particles with Z≥23 gain energy E≤1020 eV. The protons are accelerated to E<4×1019 eV, and they do not fall within the energy range concerned at any field strength B. Interactions with infrared photons do not affect the accelerated-particle escape from the sources if the galactic luminosity L≤1046 erg s?1 and if the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the galactic-disk axial ratio is comparatively large. The particles do not lose their energy through magnetodrift radiation if their deflection from the jet axis does not exceed 0.03–0.04 pc at a distance R≈40–50 pc from the center. The synchrotron losses are small, because the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) predominantly along the motion. If this model is correct, then the detected protons are nuclear fragments or are accelerated in other sources. The jet magnetic fields can be estimated by using the cosmic-ray energy spectrum and chemical composition.  相似文献   

10.
In this paper, we develop a consistent, phenomenological methodology to measure preferred-frame effects (PFEs) in binary pulsars that exhibit a high rate of periastron advance. We show that in these systems the existence of a preferred frame for gravity leads to an observable characteristic 'signature' in the timing data, which uniquely identifies this effect. We expand the standard Damour–Deruelle timing formula to incorporate this 'signature' and show how this new PFE timing model can be used to either measure or constrain the parameters related to a violation of the local Lorentz invariance of gravity in the strong internal fields of neutron stars. In particular, we demonstrate that in the presence of PFEs we expect a set of the new timing parameters to have a unique relationship that can be measured and tested incontrovertibly. This new methodology is applied to the Double Pulsar, which turns out to be the ideal test system for this kind of experiment. The currently available data set allows us only to study the impact of PFEs on the orbital precession rate,     , providing limits that are, at the moment, clearly less stringent than existing limits on PFE strong-field parameters. However, simulations show that the constraints improve fast in the coming years, allowing us to study all new PFE timing parameters and to check for the unique relationship between them. Finally, we show how a combination of several suitable systems in a PFE antenna array , expected to be available, for instance, with the Square Kilometre Array (SKA), provides full sensitivity to possible violations of local Lorentz invariance in strong gravitational fields in all directions of the sky. This PFE antenna array may eventually allow us to determine the direction of a preferred frame should it exist.  相似文献   

11.
Assuming that the energy gain by cosmic-ray (CR) particles is a stochastic process with stationary increments, we derive expressions for the shape of their energy spectrum up to energies E ~ 1018 eV. In the ultrarelativistic case under study, the energy is proportional to the momentum, whose time derivative is the force. According to the Fermi mechanism, a particle accelerates when it passes through a system of shock waves produced by supernova explosions. Since these random forces act on time scales much shorter than the particle lifetime, we assume them to be delta-correlated in time. In this case, due to the linear energy-momentum relationship, the mean square of the energy (increments) is proportional to the differential scale τ(E) ~ (≥E), where τ (≥E) is the cumulative time it takes for a particle to gain an energy ≥E. The probability of finding a particle with energy ≥E somewhere in the system is inversely proportional to the time it takes to gain the energy E. To estimate an upper limit for the space number density of CR particles, we use estimates of the CR volume energy density, a quantity known for our Galaxy. It is taken to be constant in the range 10 GeV ≤ E ≤ 3 × 106 GeV, where the index of the energy spectrum was found to be ?8/3 ≈ ?2.67 against its empirical value of ?2.7. In the range 3 × 106 GeV ≤ E < 109 GeV, the upper limit for the volume energy density is estimated by using the results from the previous range to be ?28/9 ≈ ?3.11 against its empirical value of ?3.1. The numerical coefficients in the suggested shapes of the spectrum can be determined by comparison with observational data. Thus, the CR energy spectrumis the result of the random walks of ultrarelativistic particles in energy/momentum space caused by the Fermi mechanism.  相似文献   

12.
The position of the knee in the Galactic cosmic ray (GCR) spectrum is shown to depend on the explosion energy distribution function of supernovae (SN). The position of the knee in the GCR spectrum can be quantitatively explained by the dominating contribution of hypernovae with explosion energies of (~30–50)×1051 erg, the fraction of which must be no less than 1% of all SN. The model reproduces the main features in the spectrum of all particles measured in extensive air shower (EAS) experiments: the knee in the spectrum of all particles at energy of about 3 PeV, the change in slope by δγ ~ 0.3–0.5 after the knee point, and the steepening of the spectrum near 1018 eV. The model predicts a smooth knee if the SN explosion energy distribution is universal and a sharp knee if the hypernovae represent a separate class of events. The suggested model of the GCR spectrum is essentially based on the assumption that a spread in explosion energies exists and that the assumptions of the standard model for the CR acceleration in supernova remnants are valid.  相似文献   

13.
14.
Titanium is a rare, secondary nucleus among Galactic cosmic rays. Using the Silicon matrix in the ATIC experiment, Titanium has been separated. The energy dependence of the Ti to Fe flux ratio in the energy region from 5 GeV per nucleon to about 500 GeV per nucleon is presented. The article was translated by the authors.  相似文献   

15.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

16.
We study in detail the effect of different particle release times from sources on the cosmic ray (CR) spectrum below 1015 eV in the Galaxy. We discuss different possible forms of particle injection such as burst-like injection, continuous injection for a finite time, injection from a stationary source and energy-dependent injection. When applied to the nearby known supernova remnants, we find that the observed CR anisotropy data favour the burst-like particle injection model for the CR diffusion coefficient   D ( E ) ∝ E a   with   a = 0.3 –0.6  in the local region. In this study we have also found that the contribution of the sources G114.3+0.3 and Monogem dominate if the observed anisotropy is a result of the effect of the nearby sources. Further study shows that we should not neglect the contribution of the undetected old sources to the local CR anisotropy.  相似文献   

17.
Weakly interacting massive particles (WIMPs) are a viable candidate for the relic abundance of dark matter (DM) produced in the early universe. So far, WIMPs have eluded direct detection through interactions with baryonic matter. Neutrino emission from accumulated WIMP annihilations in the solar core has been proposed as a signature of DM, but has not yet been detected. These null results may be due to small-scale DM density fluctuations in the halo with the density of our local region being lower than the average  (∼0.3 GeV cm−3)  . However, the accumulated neutrino signal from WIMP annihilations in the Galactic stellar disc would be insensitive to local density variations. Inside the disc, DM can be captured by stars causing an enhanced annihilation rate and therefore a potentially higher neutrino flux than what would be observed from elsewhere in the halo. We estimate a neutrino flux from the WIMP annihilations in the stellar disc to be enhanced by more than an order of magnitude compared to the neutrino fluxes from the halo. We offer a conservative estimate for this enhanced flux, based on the WIMP–nucleon cross-sections obtained from direct-detection experiments by assuming a density of  ∼0.3 GeV cm−3  for the local DM. We also compare the detectability of these fluxes with a signal of diffuse high-energy neutrinos produced in the Milky Way by the interaction of cosmic rays with the interstellar medium. These comparative signals should be observable by large neutrino detectors.  相似文献   

18.
The relative abundances of the nuclei from neon to iron in the energy interval 150–400 MeV/n have been estimated by using a balloon borne cellulose-nitrate plastic detector. The source abundances are obtained by extrapolating the near-earth abundances using leaky box model of cosmic ray propagation in the interstellar space. The results are compared with those of other investigators and a general agreement is obtained. However, a discrepancy arises especially in the case of Al which is not detected in the present investigation.  相似文献   

19.
Besides parallel and perpendicular spatial diffusion, momentum diffusion can be seen as the third important process of cosmic ray transport. In this paper, the recently derived weakly non-linear theory is applied for a simple quasi-magnetostatic composite model to determine the momentum diffusion coefficient. It is demonstrated that non-linear effects are essential and cannot be neglected. Therefore, the weakly non-linear transport theory has to be preferred over the traditional quasi-linear approach. Within this improved theory, we find for the rigidity dependence of the momentum diffusion coefficient   A ∼ R 1.4  for relativistic and   A ∼ R 0.4  for non-relativistic cosmic rays.  相似文献   

20.
The evidence that the heliosphere retains a pronounced north-south asymmetry during a long period (five solar cycles) is discussed. A modification of the standard model for the interplanetary magnetic field that provides the observed asymmetry is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号