首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
石强 《海洋通报》2014,33(2):148-156
根据南黄海36°N断面1977-2013年历年2月表底层温度、盐度观测资料,采用旋转经验正交函数(REOF)、最大熵谱分析和延迟相关分析等方法分析了断面温盐年际变化时空模态和机制。断面表底层温度时空模态有二种:鲁南近海型和南黄海槽型,模态时间分量主要有准周期变化和线性趋势变化,表底层温度鲁南近岸型模态有显著线性升高趋势,表底层温度南黄海槽型模态准平衡变化。温度模态年际变化是对局地气温、风应力、黄海暖流、太平洋年代际振荡指数位相和ENSO事件的响应。断面表底层盐度时空模态有二种:鲁南近海型和南黄海槽型,模态时间分量主要有准周期变化和线性趋势变化,表层盐度南黄海槽型模态有显著线性降低趋势,表底层盐度鲁南近海型模态准平衡变化。表底层盐度模态是对辽南水、渤南沿岸水和黄海暖流水盐度年际变化的响应。  相似文献   

2.
利用1951-2008年海口降水量资料和北半球500 hPa高度及相关环流特征指数资料,北太平洋海温及相关NINO区海温特征指数资料,分析了海口秋汛期(9-10月)旱涝的气候特征及其与500 hPa高度场、北太平洋海温场和相关特征指数的关系.结果发现:海口秋汛期(9-10月)降水年际变化大,旱涝年代际变化特征明显;北半...  相似文献   

3.
近50年我国江淮流域气候变化   总被引:20,自引:0,他引:20  
为了详实地了解江淮流域的气候变化和进一步做好短期气候预测,利用近50a气温和降水资料,从平均值和变率两方面研究了我国江淮流域的气候变化.结果表明:(1) 近50a来江淮流域气候变化的主要特征是气候变暖,与全国变暖的趋势一致;降水呈不显著的增长趋势.温度和降水由低基本态向高基本态过渡,目前均处于高气候基本态下;(2) 无论是温度还是降水,其变率随时间而变,目前均处于高气候变率时段,要注意高基本态和高变率结合易导致的高温、洪涝等极端气候事件;(3) 温度在1986年前后发生了一次突变,降水在1968年前后发生了一次突变.无论是温度还是降水,突变后均比突变前有所增加.根据突变分析可将江淮流域近50a气候变化过程划分为相对冷干阶段(20世纪50~60年代)-相对冷湿阶段(70~80年代)-相对暖湿阶段(90年代至今).  相似文献   

4.
采用山东省111个地面测站45年(1965—2009年)逐日降水量资料,分析了山东主雨季的气候特征,特别是降水量的突变性。经统计检验确认,5~10月候(日)降水量(以下简称降水)序列存在3次突增或骤减的显著突变,主雨季定义在第1次突变至第3次突变之间,即36~49侯,历时14侯。第2次突变发生在8月中旬,是主雨季内一个短时降水减少过程,与副高的短暂南撤有关。突变是在降水的年循环和季节变化背景下,由月内振荡对季节内振荡的调制中发生的。主雨季的进程与副高和西风带系统相对位置的变动紧密相关,3次突变的环流特征各不相同,每一次突变都显示出特定的环流结构,山东主雨季起讫的降水突变是由不同尺度大气环流相互调整的结果。  相似文献   

5.
利用1960~2000年全国436个地面测站的逐日降水量资料,将中国雨季分为江南春雨期(3月16日~5月15日)、夏季风主汛期(5月16~7月15日)、夏季风后汛期(7月16日~9月15日)3个时段,应用S-EOF(Season-reliant Empirical Orthogonal Function)分解的方法研究了中国雨季旱涝型主模态季节演变的空间分布及其时间变化特征.主要分析了前3个主模态的时空分布特征,第一模态(S-EOF1)的旱涝分布为江南初夏旱涝型,主要显示出江南地区在夏季风主汛期以整个长江以南地区的旱或涝为主要特征,具有20~30 a的年代际振荡周期.第二模态(S-EOF2)空间向量集中体现了夏季风主汛期长江中下游流域和华南地区形成南北相反的旱涝分布,为南北跷跷板型,且这种分布在夏季风后汛期发生转变,这种南北旱涝急转型以2~4 a的年际变化为主.第三模态(S-EOF3)主要体现了夏季风后汛期长江中下游地区与华北和华南地区降水异常呈负相关关系,即自南向北呈现三明治夹心型的旱涝分布,以低频年际振荡为主,显著周期为6~8 a,同时还具有准30 a的年代际变化.  相似文献   

6.
渤海冬季温盐年际变化时空模态与气候响应   总被引:1,自引:0,他引:1  
石强 《海洋通报》2013,32(5):505-513
根据渤海断面1978-2012 历年2 月表、底层海水温度、盐度和气候要素观测资料,采用旋转经验正交函数 (REOF)、最大熵谱分析和延迟相关分析等方法,研究了渤海冬季表底层温度、盐度年际变化时空模态与气候响应。渤海冬 季表底层温度年际变化分为三种时空模态:开阔海型、黄河口型和辽河口型,其中只有开阔海型模态是对冬季气温变暖的响 应,时间分量有显著线性升高趋势和跃变升高。黄河口型模态是对冬季西北季风强度逐渐减弱的响应,时间分量有显著线性 降低趋势。辽河口型模态是对局地海冰年际变化的响应,时间分量准平衡变化。渤海冬季表底层盐度年际变化分为二种时空 模态:辽东湾型和黄河口型,其中黄河口型模态与黄河口年径流量滞后5 年显著负线性相关,该模态时间分量有显著线性升 高趋势和跃变;辽东湾型模态与黄河年径流量滞后7 年显著负线性相关;滞后2 年显著非线性相关,该模态时间分量年际变 化为准平衡形态。黄河口年径流量是影响渤海冬季盐度年际变化的主要因素。  相似文献   

7.
热带太平洋气候变率的三类模态及与ENSO强度变化的关系   总被引:5,自引:0,他引:5  
基于Kaplan等重建的1856—2001年全球海表水温距平(SSTA)资料,用小波变换分析了热带太平洋SSTA的气候变率,对热带太平洋SSTA分别进行2—8、8—30和30—100a带通滤波,然后进行EOF分解。结果发现,ENSO模态具有5a左右的年际变化和15a左右的年代际变化2种显著周期,当二者位相相同时,ENSO事件加强,当二者位相相反时,ENSO事件减弱,当年际变化不明显时,显著的年代际变化也可单独导致ENSO事件;热带太平洋SSTA气候态变率以西太平洋暖池和赤道两侧的热带中东太平洋明显海温同号异常为主要特征,具60a左右的周期,其相位变化与气候跃变及El Nifio事件的类型有密切联系;长期增温倾向加大了El Nifio事件的振幅。文章最后指出,ENSO事件强度变化是由年际、年代际和气候态等3类模态变率共同作用的结果,在ENSO预报模式中考虑并引入年代际和气候态变化对ENSO循环的影响,是提高ENSO预测水平的有效途径之一。  相似文献   

8.
使用NCEP/NCAR的海表温度(SST)、海面10 m风场的月平均再分析资料,用联合SVD(CSVD)的方法研究了不同季节南海的海气耦合模的时空分布特征及其与中国夏季降水的关系。通过对不同季节的海-气耦合模的年际变化特征的分析。结果发现:第一模态为最显著模态,模态协方差贡献比在四季均超过80%,空间上SST表现为与南海等深线相一致的海盆模态,风场上主要表现为弱的冬季风或弱的夏季风,各个季节的海-气耦合模态都主要反映了SST-蒸发-风反馈这样1种正反馈的海-气相互作用过程,而且冬季风期间这种相互作用要更强烈些。时间系数均主要表现为一致的上升趋势和1976年前后的年代际突变,以及与ENSO相关的年际变化特征。冬、夏季弱的季风对应暖SST的特征体现了这种耦合模态隔季相关的特征,都对应夏季华南旱(涝)、江南涝(旱),华北、山东半岛旱(涝),东北涝(旱)这样1种波列状的旱涝相间分布。  相似文献   

9.
利用SODA(Simple Ocean Data Assimilation)再分析资料,分析了南海北部深水海域温度及盐度的季节和年际变化特征,讨论了季节及年际变化时间尺度上黑潮通过吕宋海峡对南海北部温、盐场的影响.资料分析表明:南海北部深水海域温、盐场存在明显的季节及年际变化特征.在气候平均态下,吕宋海峡处黑潮对南海北部温、盐场的影响主要存在于119°E以东;黑潮对南海的入侵程度在冬季最大,可影响到118°E附近;在秋季最小.吕宋海峡以西的温度水平梯度在秋季最弱,而盐度水平梯度则在夏季最弱.在吕宋海峡处黑潮形变的南侧,温、盐场年际变化信号最强.通过EOF(Empirical Othorgnal Function)分析,发现南海北部深水海域盐度和温度场第一模态的最大变率均分布在吕宋海峡处黑潮形变的南部,且均具有2~5 a的年际变化周期.另外,在年际变化时间尺度上,南海北部深水海域盐度场受黑潮形变的影响较大,在黑潮流量大的年份吕宋海峡处盐度值较低,在黑潮流量小的年份吕宋海峡处盐度值较高,而温度场则和Nino3.4指数呈明显的负相关变化.  相似文献   

10.
热带太平洋海温异常气候态变率与我国气候异常   总被引:1,自引:0,他引:1       下载免费PDF全文
用Kaplan等重建的1856-2001年全球海面水 温距平(SSTA)资料,分析了热带太平洋SSTA气候态变率,其主模态以热带西太平洋和赤道南北两侧的热带东太平洋大值同号为主要特征,其时间系数具60a左右的显著周期,它与全球气候跃变和夏季西北太平洋副热带高压及我国汛期降水的长期变化有密切联系。根据热带太平洋气候态变率60a左右的时间尺度,预测未来10a内,我国汛期降水仍以长江流域偏多为主,华北干旱形势难以缓解。  相似文献   

11.
The response of the Gulf of Alaska (GOA) circulation to large-scale North Pacific climate variability is explored using three high resolution (15 km) regional ocean model ensembles over the period 1950-2004. On interannual and decadal timescales the mean circulation is strongly modulated by changes in the large scale climate forcing associated with PDO and ENSO. Intensification of the model gyre scale circulation occurs after the 1976-1977 climate shift, as well as during 1965-1970 and 1993-1995. From the model dynamical budgets we find that when the GOA experiences stronger southeasterly winds, typical during the positive phase of the PDO and ENSO, there is net large-scale Ekman convergence in the central and eastern coastal boundary. The geostrophic adjustment to higher sea surface height (SSH) and lower isopycnals lead to stronger cyclonic gyre scale circulation. The opposite situation occurs during stronger northwesterly winds (negative phase of the PDO).Along the eastern side of the GOA basin, interannual changes in the surface winds also modulate the seasonal development of high amplitude anticyclonic eddies (e.g. Haïda and Sitka eddies). Large interannual eddy events during winter-spring, are phase-locked with the seasonal cycle. The initial eddy dynamics are consistent with a quasi-linear Rossby wave response to positive SSH anomalies forced by stronger downwelling favorable winds (e.g. southwesterly during El Niño). However, because of the fast growth rate of baroclinic instability and the geographical focusing associated with the coastal geometry, most of the perturbation energy in the Rossby wave is locally trapped until converted into large scale nonlinear coherent eddies. Coastally trapped waves of tropical origin may also contribute to positive SSH anomalies that lead to higher amplitude eddies. However, their presence does not appear essential. The model ensembles, which do not include the effects of equatorial coastally trapped waves, capture the large Haïda and Sitka eddy events observed during 1982 and 1997 and explain between 40% and 70% of the tidal gauges variance along the GOA coast.In the western side of the GOA basin, interannual eddy variability located south of the Alaskan Stream is not correlated with large scale forcing and appears to be intrinsic. A comparison of the three model ensembles forced by NCEP winds and a multi-century-long integration forced only with the seasonal cycle, shows that the internal variability alone explains most of the eddy variance. The asymmetry between the eddy forced regime in the eastern basin, and the intrinsic regime in the western basin, has important implications for predicting the GOA response to climate change. If future climate change results in stronger wintertime winds and increased downwelling in the eastern basin, then increased mesoscale activity (perhaps more or larger eddies) might occur in this region. Conversely, the changes in the western basin are not predictable based on environmental forcing. Eastern eddies transport important biogeochemical quantities such as iron, oxygen and chlorophyll-a into the gyre interior, therefore having potential upscale effects on the GOA high-nutrient-low-chlorophyll region.  相似文献   

12.
对太平洋500hPa候高度场和距平场进行了主成分分析,得出反映500hPa候高度特征的典型场。指出候高度场的第1特征向量的空间型是季节变化的主要型,它可解释总方差的74.5%,候高度场的其余特征向量与距平场的特征向量是按顺序的对应相似。这些典型场可以很好地描述北太平洋的大气环流特征。距平场的第1特征向量空间型清楚地反映了与厄尔·尼诺现象有关的环流型。  相似文献   

13.
Aim to linking the variability of drought in northwest China to the oceanic influence of North Atlantic SSTs at the background of global warming and at the regional climate change shifting stages, year aridity index variations in northwest China and summer North Atlantic sea surface temperature (SST) variations are examined for the 44 a period of 1961-2004 using singular value decomposition (SVD) analysis. Results show that the SST anomalies (SSTA)in the North Atlantic in summer reflected three basic models. The first SVD mode of SST pattern shows a dipole - like variation with the positive center located at southwest and negative center at northeast of extratropical North Atlantic. And it strongly relates to the positive trend in AI variation in northwest China. The second coupled modes display the coherent positive anomalies in extratropical North Atlantic SST and the marked opposite trend of AI variability between north and south of Xinjiang. In addition, the lag correlation analysis of the first mode of SSTA and geopotential heights at 500 hPa variations also shows that the indication of the former influencing the latter configuration, which result in higher air temperature and less precipitation when the SSTA in the North Atlantic Ocean in summer motivated Eurasian circulation of EA pattern, further to influence the wet - dry variations in northwest China by the ocean-to - atmosphere forcing.  相似文献   

14.
The El Niño/Southern Oscillation (ENSO) constitutes a major source of potential predictability in the tropics. The majority of past seasonal prediction studies have concentrated on precipitation anomalies at the seasonal mean timescale. However, fields such as agriculture and water resource management require higher time frequency forecasts of precipitation variability. Regional climate models (RCMs), with their increased resolution, may offer one means of improving general circulation model forecasts of higher time frequency precipitation variability.
Part I of this study evaluated the ability of the Rossby Centre regional atmospheric model (RCA), forced by analysed boundary conditions, to simulate seasonal mean precipitation anomalies over the tropical Americas associated with ENSO variability. In this paper the same integrations are analysed, with the focus now on precipitation anomalies at subseasonal (pentad) timescales.
RCA simulates the climatological annual cycle of pentad-mean precipitation intensity quite accurately. The timing of the rainy season (onset, demise and length) is well simulated, with biases generally of less than 2 weeks. Changes in the timing and duration of the rainy season, associated with ENSO forcing, are also well captured. Finally, pentad-mean rainfall intensity distributions are simulated quite accurately, as are shifts in these distributions associated with ENSO forcing.  相似文献   

15.
大气模式中季节内振荡特征对不同海温强迫场的响应   总被引:2,自引:0,他引:2  
利用美国国家大气研究中心 (NCAR)的全球大气模式 (CCM3) ,分别以月平均和周平均海表温度 (SST)为强迫场进行 2个积分试验 (称为 CCMM和 CCMW试验 )。积分结果与观测资料的对比分析发现 ,CCM3模拟大气季节内振荡 (MJO)信号的强度均较观测资料偏弱 ,而其中以CCMW模拟的强度略大而较接近真实。表明 SST强迫场包含更真实的季节内变化信息对提高模拟 MJO强度有作用。 CCMM与 CCMW模拟 MJO活动的时间位相均与观测差别较大 ,直接原因在于 CCM3中降水季节内振荡与 SST变化的相关关系不正确 ,而更根本的问题在于大气模式无法反映资料分析发现的季节内时间尺度的 SST与大气的相互作用。  相似文献   

16.
The adjustment of the North Pacific Subtropical and Subpolar Gyres towards changes in wind stress leads to different time-scale variabilities, which plays a significant role in climate changes. Based on the Simple Ocean Data Assimilation (SODA) and Global Ocean Data Assimilation System (GODAS) datasets, the variations of the Subtropical and Subpolar Gyres are diagnosed using "three-dimension Ocean Circulation Diagnostic Method", and established three types of index series describe the strength, meridional and depth center of the Subtropical and Subpolar Gyres. The above indices present the seasonal, interannual and interdecadal variabilities of the Subtropical and Subpolar Gyres, which proves well. Both the Gyres are the strongest in winter, but the Subtropical Gyre is the weakest in summer and the Subpolar Gyre is the weakest in autumn. The Subtropical Gyre moves northward from February to March, southward in October, and to the southernmost in around January, while the Subpolar Gyre moves northward in spring, southward in summer, northward again in autumn and reaching the extreme point in winter to the south. The common feature of the interannual and interdecadal variabilities is that the two gyres were weaker and to the north before 1976-1977, while they were stronger and to the south after 1976-1977. The Subpolar Gyre has made a paramount contribution to the variability on interdecadal scales. As is indicated with the Subpolar Gyre strength indices, there was an important shift from weak to strong around 1976-1977, and the correlation coefficient with the North Pacific Decadal Oscillation (PDO) indices was 0.45, which was far better than that between the Subtropical Gyre strength indices and the PDO. Tests show that influenced by small and mesoscale eddies, the magnitude of large-scale gyres strength is strongly dependent on data resolution. But seasonal interannual and interdecadal large-scale variabilities of the two gyres presented with indices is less affected by model resolution.  相似文献   

17.
Seasonal and interannual variability of the pressure field and indices of the North Atlantic atmosphere zonal circulation are analysed using historical (1894–1988) observations. It is shown that fluctuations of the index of North Atlantic oscillations (NAO) and that of the eastward transport give evidence of the interannual fluctuations with the typical time scale being 2–7 years. It is shown that the magnitude of interannual NAO index variability exceeds the typical magnitude of seasonal variations, particularly in winter. The time scale of NAO index variations and eastward transport coincides with the typicalEl Niño-southern oscillations (ENSO) temporal scale. The amplitudes of the annual, semi-annual harmonics, and high-frequency fluctuations of the NAO index increase during a typical ENSO event at least by a factor of 2.Translated by V. Puchkin.  相似文献   

18.
The interdecadal modulation of interannual variability of the atmosphere and ocean is examined over the North Pacific by using Wavelet Transform combined with Empirical Orthogonal Function (EOF) or Singular Value Decomposition (SVD) analysis. For the period of record 1899–1997, the interannual variability of the wintertime Aleutian Low, identified by either the North Pacific Index or the leading eigenvector (EOF-1) of North Pacific sea level pressure (SLP), exhibits an interdecadal modulation. Interannual variance in the strength of the Aleutian Low was relatively large from the mid-1920s to mid-1940s and in the mid-1980s, but relatively small in the periods from 1899 to the mid-1920s and from the mid-1940s to the mid-1970s. The periods of high (low) interannual variability roughly coincide with pentadecadal regimes having a time averaged relatively intense (weak) Aleutian Low. Consistent with this SLP variability the interannual variance in the zonal wind stress is strengthened in the central North Pacific after the 1970s. The SLP EOF-2, which is related to the North Pacific Oscillation, exhibited a strengthening trend from the beginning of this century to the mid-1960s. After the 1970s, the interannual variance of SLP EOF-2 is generally smaller than that in the period from 1930 to 1970. Similar interdecadal changes in interannual variance are found in expansion coefficients for the first two EOFs of the Pacific sector 500 hPa height field for the period 1946–1993. EOF-1 of Pacific sector 500 hPa corresponds to the Pacific/North American (PNA) teleconnection pattern, while EOF-2 is related to the Western Pacific (WP) pattern. The relative influence of the atmospheric PNA and WP interannual variability on North Pacific SSTs appears to have varied at pentadecadal time scales. Results from an SVD analysis of winter season (December–February) 500 hPa and North Pacific spring season (March–May) SST fields demonstrate that the PNA-related SST anomaly exhibited larger interannual variance after the 1970s, whereas the interannual variance of the WP related SST anomaly is larger before the 1970s. Correlations between the coastal North Pacific SST records and gridded atmospheric field data also change on interdecadal time scales. Our results suggest that the SST records from both the northwest and northeast Pacific coasts were more closely coupled with the PNA teleconnection pattern during the periods of 1925–1947 and 1977–1997 than in the regime from 1948 to 1976. Teleconnections between ENSO and preferred patterns of atmospheric variability over the North Pacific also appear to vary on interdecadal time scales. However, these variations do not reflect a unique regime-dependent influence. Our results indicate that ENSO is primarily related to the PNA (WP) pattern in the first (last) half of the present century. Correlation coefficients between indices for ENSO and PNA-like atmospheric variability are remarkably weak in the period from 1948 to 1976.  相似文献   

19.
The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.  相似文献   

20.
1 IwrRoDUcrIowln recen l00 years. mateorolQgi8ts have paid mu0h aneation to impact of ocean onlong-range weather process. Because fram view POillt of space and tAne scale condition,ocean is one of very important phySical factor for the evolotion of thespheric circulation.The scientific research cooperation grOup (l979) first found that SST in the equatorialeastern Pacific reversely correlates with summer tempendre aver Nowheast China. Pan etal (1981) discussed re1atfon between heating of…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号