首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is widespread use of passive remote sensing techniques to quantify trace gas column densities in volcanic plumes utilizing scattered sunlight as a light source. Examples include passive DOAS, COSPEC, and the SO2 camera. In order to calculate trace gas concentrations or volcanic emission fluxes, knowledge about the optical path through the plume is necessary. In the past, a straight photon path through the plume has always been assumed although it was known that this is not always true. Here we present the results of model studies conducted specifically to quantify the effects of realistic radiative transfer in and around volcanic plumes on ground-based remote sensing measurements of SO2. The results show that measurements conducted without additional information on average photon paths can be inaccurate under certain conditions, with possible errors spanning more than an order of magnitude. Both over and underestimation of the true column density can occur. Actual errors depend on parameters such as distance between instrument and plume, plume SO2 concentration, plume aerosol load, as well as aerosol conditions in the ambient atmosphere. As an example, a measurement conducted with an SO2 camera is discussed, the results of which can only be correctly interpreted if realistic radiative transfer is considered. Finally, a method is presented which for the first time allows the retrieval of actual average photon paths in spectroscopic (i.e. DOAS) measurements of adequate resolution. By allowing for a wavelength dependent column density during the evaluation of DOAS measurements, we show how radiative transfer effects can be corrected using information inherently available in the measured spectra, thus greatly enhancing the accuracy of DOAS measurements of volcanic emissions.  相似文献   

2.
We apply a measurement technique that utilizes thermal video of vapor-dominated volcanic plumes to estimate the H2O gas flux at three degassing volcanoes. Results are compared with H2O flux measurements obtained using other methods to verify the thermal camera-derived values. Our estimation of the H2O emission rate is based on the mass and energy conservation equations. H2O flux is quantified by extracting the temperature and width of the gas plume from the thermal images, calculating the transit velocity of the gas plume from the thermal video, and combining these results with atmospheric parameters measured on-site. These data are then input into the equations for conservation of mass and energy. Selected volcanoes for this study were Villarrica in Chile, Stromboli in Italy, and Santa Ana in El Salvador. H2O fluxes estimated from the thermal imagery were 38–250?kg?s?1 at Villarrica, 4.5–14?kg?s?1 for Stromboli’s Central Crater, and 168–219?kg?s?1 at Santa Ana. These compare with H2O flux values estimated by other methods of 73–220, 3–70 and 266?kg?s?1, at the three volcanoes, respectively. The good agreement between thermal image-derived results and those estimated by other methods seem to validate this method.  相似文献   

3.
A portable multi-sensor system was developed to measure volcanic plumes in order to estimate the chemical composition and temperature of volcanic gases. The multi-sensor system consists of a humidity–temperature sensor, SO2 electrochemical sensor, CO2 IR analyzer, pump and flow control units, pressure sensor, data logger, and batteries; the whole system is light (∼5 kg) and small enough to carry in a medium-size backpack. Volcanic plume is a mixture of atmosphere and volcanic gas; therefore volcanic gas composition and temperature can be estimated by subtracting the atmospheric gas background from the plume data. In order to obtain the contrasting data of the plume and the atmosphere, measurements were repeated in and out of the plume. The multi-sensor technique was applied to measure the plume of Tarumae, Tokachi, and Meakan volcanoes, Hokkaido, Japan. Repeated measurements at each volcano gave a consistent composition with ±10–30% errors, depending on the stability of the background atmospheric conditions. Fumarolic gas samples were also collected at the Tokachi volcano by a conventional method, and we found a good agreement (the difference <10%) between the composition estimated by the multi-sensor technique and conventional method. Those results demonstrated that concentration ratios of major volcanic gas species (i.e., H2O, CO2, and SO2) and temperature can be estimated by the new technique without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Estimation of a more detailed gas composition can be also achieved by the combination of alkaline filter techniques to measure Cl/F/S ratios in the plume and other sensors for H2S and H2.  相似文献   

4.
The simultaneous quantitative determination of two-dimensional bromine monoxide (BrO) and sulphur dioxide (SO2) distributions in volcanic gas plumes is described. Measurements at the fumarolic field on the island Vulcano (autumn 2004) and in the plume of Mt. Etna volcano (spring 2005) were carried out with an Imaging DOAS instrument. The SO2 fluxes of several fumaroles were estimated from two-dimensional distributions of SO2. Additionally, the first two-dimensional distributions of BrO within a volcanic plume were successfully retrieved. Slant column densities of up to 2.6 × 1014 molecules per square centimetre were detected in the plume of Mt. Etna. The investigation of the BrO/SO2 ratio, calculated from the two-dimensional distributions of SO2 and BrO, shows an increase from the centre to the edge of the volcanic plume. These results have significance for the involvement of ozone during BrO formation processes in volcanic emissions.  相似文献   

5.
Bulk atmospheric deposition of major cations (Na, K, Ca, Mg) and anions (Cl, F, SO4) were measured at 15 sites around an active volcano, Mount Etna, from 2001 to 2003. Their composition indicates several natural sources, among which deposition of plume-derived volcanogenic gas compounds is prevalent for F, Cl and S. Plume-derived acidic compounds are also responsible for the prevailing acidic composition of the samples collected on the summit of the volcano (pH in the 2.45–5.57 range). Cation species have complex origin, including deposition of plume volcanogenic ash and aerosols and soil-dust wind re-suspension of either volcanic or carbonate sedimentary rocks. Variation of the deposition rates during the March 2001–March 2003 period, coupled with previous measurements from 1997 to 2000 (Appl Geochem 16:985–1000, 2001), were compared with the variation of SO2 flux, volcanic activity and rainfall. The deposition rate was mainly controlled by rainfall. Commonly, about 0.1–0.9% of HF, HCl and SO2 emitted by the summit crater's plume were deposited around the volcano. We estimate that ∼2 Gg of volcanogenic sulphur were deposited over the Etnean area during the 2002–2003 flank eruption, at an average rate of ∼24 Mg day−1 which is two orders of magnitude higher than that typical of quiescent degassing phases.  相似文献   

6.
Active volcanoes are thought to be important contributors to the atmospheric mercury (Hg) budget, and this chemical element is one of the most harmful atmospheric pollutants, owing to its high toxicity and long residence time in ecosystems. There is, however, considerable uncertainty over the magnitude of the global volcanic Hg flux, since the existing data on volcanogenic Hg emissions are sparse and often ambiguous. In an attempt to extend the currently limited dataset on volcanogenic Hg emissions, we summarize the results of Hg flux measurements at seven active open-conduit volcanoes; Stromboli, Asama, Miyakejima, Montserrat, Ambrym, Yasur, and Nyiragongo.. Data from the dome-building Soufriere Hills volcano are also reported. Using our determined mercury to SO2 mass ratios in tandem with the simultaneously-determined SO2 emission rates, we estimate that the 7 volcanoes have Hg emission rates ranging from 0.2 to 18 t yr-1 (corresponding to a total Hg flux of ~41 t·yr-1). Based on our dataset and previous work, we propose that a Hg/SO2 plume ratio ~10-5 is best-representative of gas emissions from quiescent degassing volcanoes. Using this ratio, we infer a global volcanic Hg flux from persistent degassing of ~95 t·yr-1 .  相似文献   

7.
 Two methods were used to quantify the flux of volcanic sulphur (as the equivalent mass of SO2) to the stratosphere over different timescales during the Holocene. A combination of satellite-based measurements of sulphur yields from recent explosive volcanic eruptions with an appropriate rate of explosive volcanism for the past 200 years constrains the medium-term (∼102 years) flux of volcanic sulphur to the stratosphere to be ∼1 Mt a–1, with lower and upper bounds of 0.3 and 3 Mt a–1. The short-term (∼10- to 20-year) flux due to small magnitude (1010–1012 kg) eruptions is of the order of 0.4 Mt a–1. At any time the instantaneous levels of sulphur in the stratosphere are dominated by the most recent (0–3 years) volcanic events. The flux calculations do not attempt to address this very short timescale variability. Although there are significant errors associated with the raw sulphur emission data on which this analysis is based, the approach presented is general and may be readily modified as the quantity and quality of the data improve. Data from a Greenland ice core support these conclusions. Integration of the sulphate signals from presumed volcanic sources recorded in the GISP2 core provides a minimum estimate of the 103–year volcanic SO2 flux to the stratosphere of 0.5–1 Mt a–1 over the past 9000 years. The short-term flux calculations do not account for the impact of rare, large events. The ice-core record does not fully account for the contribution from small, frequent events. Received: 27 September 1995 / Accepted: 13 December 1995  相似文献   

8.
Here we report measurements of the chemical composition and flux of gas emitted from the central lava lake at Erta 'Ale volcano (Ethiopia) made on 15 October 2005. We determined an average SO2 flux of ∼ 0.69 ± 0.17 kg s− 1 using zenith sky ultraviolet spectroscopy of the plume, and molar proportions of magmatic H2O, CO2, SO2, CO, HCl and HF gases to be 93.58, 3.66, 2.47, 0.06, 0.19 and 0.04%, respectively, by open-path Fourier transform infrared (FTIR) spectrometry. Together, these data imply fluxes of 7.3, 0.7, 0.008, 0.03 and 0.004 kg s− 1 for H2O, CO2, CO, HCl and HF, respectively. These are the first FTIR spectroscopic observations at Erta 'Ale, and are also some of the very few gas measurements made at the volcano since the early 1970s (Gerlach, T.M., 1980b. Investigation of volcanic gas analyses and magma outgassing from Erta 'Ale lava lake, Afar, Ethiopia. Journal of Volcanology and Geothermal Research, 7(3–4): 415–441). We identify significant increases in the proportion of H2O in the plume with respect to both CO2 and SO2 across this 30-year interval, which we attribute to the depletion of volatiles in magma that sourced effusive eruptions during the early 1970s and/or to fractional magma degassing between the two active pit craters located in the summit caldera.  相似文献   

9.
On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002–2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a 4-year database of summit soil CO2 flux on the basis of which we define the thresholds (low–medium–high) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. It is noteworthy that geochemical signals of volcanic unrest have been clearly identified before, during and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.  相似文献   

10.
A joint United States/Russian/French collaborative experiment was undertaken in March 1993 and March 1996. Projects LODE I and II (Lake Owens Dust Experiments) took place on the anthropogenically desertified playa (dry lakebed) and surrounding regions of Owens Lake, in east-central California. One of the five parts of Project LODE was to determine relationships between optical depth and flux of dust emitted from the dry lake. Project LODE II included subsequent dust plume measurements and size distributions obtained through April 1996, to further refine the flux measurements for distinct mineral aerosol source regions at Owens Lake. Size distributions of dust aerosol were determined and aerosol optical depths were calculated from sunphotometer solar extinction measurements taken downwind in plumes coming from the emissive areas of Owens Lake. This source was visually observed for 10 measured dust storms. The plume mass was calculated to be 1·5 × 109 g using ground-based measurements and ≥1·6 × 109 g from satellite data. Project LODE II results were found to be consistent with LODE I results for the south end of the playa, but flux values were found to be reduced for the northeastern portion of the playa by comparison. Vertical flux values estimated by sunphotometry were found to be consistent with values estimated via a micrometeorological method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03?kg s–1 (2.8?Mg? day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10?min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.  相似文献   

12.
Gas emissions from Tatun volcanic group, northern Taiwan, were studied for the first time using a multi-component gas analyser system (Multi-GAS) in combination with Giggenbach flask methods at fumaroles and mud pools at Da-you-keng (DYK) and Geng-tze-ping (GZP). CO2/S molar ratios observed at DYK ranged from 3–17, similar ratios were observed using a Multi-GAS sensor box of 8–16. SO2 at GZP was low, higher concentrations were observed at DYK where SO2/H2S ratios were close to 1 for both methods. A lower CO2/H2S ratio was measured via Giggenbach flask sampling (7.2) than was found in the plume using the gas sensor at GZP (9.2). This may reflect rapid oxidation of H2S as it mixes with background air. Gaseous elemental mercury (GEM) levels were observed in the fumarole gases using a portable mercury spectrometer. These are the first such measurements of mercury at Tatun. Mean GEM concentrations in the fumarole plumes were ∼ 20 ng m− 3, with much higher concentrations observed close to the ground (mean [GEM] 130 and 290 ng m− 3 at DYK and GZP, respectively). The GEM in the fumarole plume was elevated above concentrations in industrial/urban air in northern Taiwan and the increase in GEM observed when the instrument was lowered suggests high levels of mercury are present in the surrounding ground surface. The GEM/CO2 (10− 8) and GEM/S (10− 6) ratios observed in the fumarole gases were comparable to those observed at other low-temperature fumaroles. Combining the Hg/CO2 ratio with a previous CO2 flux value for the area, the annual GEM flux from the Tatun field is estimated as 5–50 kg/year.  相似文献   

13.
We present thermal measurements made by high spatial resolution ground-based (a hand-held thermal camera) and low spatial resolution space-based (MODIS) instruments for a lava flow field active during the last phase of the May–July 2003 eruption at Piton de la Fournaise (La Réunion). Multiple oblique ground-based thermal images were merged to provide full coverage of the flow-field. These were then corrected for path length attenuation and orthorectified, allowing the at-surface radiance emitted by the flow-field to be estimated. Comparison with the radiance recorded by the MODIS sensors during the eruption reveals that, for clear-sky conditions and moderate-to-low viewing angles (satellite zenith <40°), the satellite measurements represent ∼90% of the at-surface radiance, and thus represent valuable data for quantifying volcanic thermal anomalies. Nevertheless, extreme viewing geometries and the presence of clouds strongly affect the radiance reaching the sensor and affected data from 94% of the overpasses. Ground-based thermal data were used to investigate an empirical relationship between the radiant heat flux and lava discharge rate during the emplacement of pahoehoe flows. While the average radiation temperature for flow surface that were 6–24 h old ranged between 500 K and 625 K, the ratio between radiative heat flux and Time-Averaged lava Discharge Rate (TADR) ranged between 1.5 × 108 J m−3 and 3.5 × 108 J m−3. This relationship was used to estimate TADR values from optimal MODIS data and produced results in line with those obtained from GPS surveys (Coppola et al. 2005). Our results underscore the importance of ground-based thermal analysis for the interpretation of satellite measurements, particularly in terms of calculating discharge rate trends.  相似文献   

14.
Using an infrared radiometer, the authors measured the infrared radiation emitted by the plume during the 1972 Piton de la Fournaise (Réunion Island) eruption in the 9.1- to 11.9-μm range.Eight histograms summarize twenty hours of continuous measurements and show a flux between 0.557 and 1.279 W/cm2 with an average of 0.88 W/cm2. The greatest number of events correspond to the flux emitted by lava fountains, while the high and rare flux values (4–6 W/cm2) correspond to detonations of chemical explosions, probably of H2 and O2.After calibration in the laboratory on a reference black body and in the field by correlation with field observations, such a technique can be used to follow changes of volcanic activity in remote and dangerous spots. Information on the number of explosions, their magnitude, and the presence and relative significance of hot magma can be transmitted continuously to a safe place.  相似文献   

15.
Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO2 fluxes and quantify CO2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m−2 day−1. Comparative maps of soil CO2 flux were simulated and CO2 emission rates estimated from three accumulation chamber (AC) CO2 flux surveys. Least-squares inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R 2 = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO2 emissions over relatively large areas.  相似文献   

16.
Active Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) measurements of halogen oxides were conducted at Masaya Volcano, in Nicaragua from April 14 to 26, 2007. The active LP-DOAS system allowed night-time halogen measurements and reduced the ClO detection limit by an order of magnitude when compared to previous passive DOAS measurements, as wavelengths below 300 nm could be used for the DOAS retrievals. BrO was detected with an average BrO/SO2 molecular ratio of approximately 3 × 10−5 during the day. However, BrO values were below the detection limit of the instrument for all night-time measurements, a strong indication that BrO is not directly emitted, but rather the result of photochemical formation in the plume itself according to the autocatalytic “bromine explosion” mechanism. Despite the increased sensitivity, both ClO and OClO could not be detected. The achieved upper limits for the X/SO2 ratios were 5 × 10−3 and 7 × 10−6, respectively. A rough calculation suggests that ClO and OClO should be present at similar abundances in volcanic plumes. Since the DOAS technique is orders of magnitude more sensitive for OClO than for ClO, this indicates that OClO should always be detectable in plumes in which ClO is found. However, further LP-DOAS studies are needed to conclusively clarify the role of chlorine oxides in volcanic plumes.  相似文献   

17.
The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m?2 day?1, with an average of 27.1 g m?2 day?1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.  相似文献   

18.
 Measurements of CO2 fluxes from open-vent volcanos are rare, yet may offer special capabilities for monitoring volcanos and forecasting activity. The measured fluxes of CO2 and SO2 from Mount St. Helens decreased from July through November 1980, but the record includes variations of CO2/SO2 in the emitted gas and episodes of greatly increased fluxes of CO2. We propose that the CO2 flux variations reflect two gas components: (a) a component whose flux decreased in proportion to 1/ √t with a CO2/SO2 mass ratio of 1.7, and (b) a residual flux of CO2 consisting of short-lived, large peaks with a CO2/SO2 mass ratio of 15. We propose two hypotheses: (a) the 1/ √t dependence was generated by crystallization in a deep magma body at rates governed by diffusion-limited heat transfer, and (b) the gas component with the higher CO2/SO2 was released from ascending magma, which replenished the same magma body. The separation of the total CO2 flux into contributions from known processes permits quantitative inferences about the replenishment and crystallization rates of open-system magma bodies beneath volcanos. The flux separations obtained by using two gas sources with distinct CO2/SO2 ratios and a peak minus background approach to obtain the CO2 contributions from an intermittent source and a continuously emitting source are similar. The flux separation results support the hypothesis that the second component was generated by episodic magma ascent and replenishment of the magma body. The diffusion-limited crystallization hypothesis is supported by the decay of minimum CO2 and SO2 fluxes with 1/ √t after 1 July 1980. We infer that the magma body at Mount St. Helens was replenished at an average rate (2.8×106 m3 d–1) which varied by less than 5% during July, August, and September 1980. The magma body volume (2.4–3.0 km3) in early 1982 was estimated by integrating a crystallization rate function inferred from CO2 fluxes to maximum times (20±4 years) estimated from the increase of sample crystallinity with time. These new volcanic gas flux separation methods and the existence of relations among the CO2 flux, crystallization rates, and magma body replenishment rates yield new information about the dynamics of an open-vent, replenished magma body. Received: 15 February 1995 / Accepted: 30 March 1996  相似文献   

19.
Diffuse CO<Subscript>2</Subscript> degassing at Vesuvio,Italy   总被引:1,自引:0,他引:1  
At Vesuvio, a significant fraction of the rising hydrothermal–volcanic fluids is subjected to a condensation and separation process producing a CO2–rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic–hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d–1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d–1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d–1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.Editorial responsibility: H. Shinohara  相似文献   

20.
The Central American volcanic arc supplies a significant proportion of the persistent annual global sulphur dioxide emissions from volcanoes. In November/December 2003, we completed a survey of the arc section from Mombacho to San Cristóbal in Nicaragua recording individual mean fluxes of 800, 530 and 220 Mg day 1 in the plumes from San Cristóbal, Telica and Masaya, respectively. An assessment of fluxes published since 1997 along the entire Central America arc yields a mean total arc flux of SO2 of 4360 Mg day 1 or 8–16% of the annual estimated global volcanic SO2 flux to the troposphere. New field data shows that Masaya volcano continues to show stable HCl/SO2 and HF/SO2 ratios, suggesting a sustained flux of these components of ∼ 220 and 30 Mg day 1, respectively (1997 to 2004). Masaya's plume composition also appears to have been stable, between 2001 and 2003, with respect to all the particulate species measured, with significant fluxes of SO42− (4 Mg day 1), Na+ (0.9–1.3 Mg day 1) and K+ (0.7 Mg day 1). Extrapolating the Masaya plume species ratios to the entire Central American arc gives mean HCl and HF fluxes of 1300 and 170 Mg day 1 and a particulate sulphate flux of 40 Mg day 1 for 1997 to 2004, although without further understanding of the degassing processes and sources at depth of these different volatiles, these arc-scale estimates should be treated with caution. Combining our arc scale mean SO2 flux with published measurements of volcanic gas compositions with respect to CO2 and H2O allows us to estimate mean CO2 fluxes of 4400–9600 Mg day 1 and H2O fluxes of 70,000–78,000 Mg day 1 for the arc. Preliminary comparisons of these estimates of outgassing rates with published volatile input fluxes into the Central American subduction zone, suggest that Cl is more efficiently recycled through the subduction zone than CO2. The results for H2O are inconclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号