首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
Mercury evasional fluxes from the sea surface into the atmosphere play an important role in the Hg biogeochemical cycle, especially in the Mediterranean basin, which is characterized by the presence of large cinnabar deposits, intense solar radiation and high temperatures for many months of the year. Since the available experimental methodologies to measure mercury flux can be used only in good weather conditions, at present it is necessary to make use of exchange models that require the knowledge of the dissolved gaseous mercury (DGM) concentration in seawater. In this paper, the main factors affecting DGM levels are discussed considering the determination of the DGM daily behaviour in different meteo-marine and weather conditions at coastal and offshore locations of the Mediterranean basin. A fully automatic device for continuous analyses of DGM concentration with a high time resolution was used. Results show that the daily trend of DGM concentration tracks that of the solar radiation intensity, often mapping the movement of the clouds. DGM levels can be decreased by the presence of high winds that increase mercury evasion from the water surface, as well as by the mixing of the surface water layer. The presence of high levels of dissolved organic matter favours the photo-induced reduction of mercury as observed by the measurements performed in a lagoon water.  相似文献   

2.
Concentrations and mineralogy of suspensates in the central and western Mediterranean are vertically and laterally variable. This variability is related to input by resuspension of bottom sediments and from local terrigenous sources. Bottom currents flowing through constrictions at the straits of Sicily and Gibraltar and the eastern entrance of the Alboran Sea resuspend bottom sediments, giving rise to increased concentrations of suspensates in near-bottom waters and limited inputs to higher levels. There is no evidence of a suspensate-rich bottom water in the Balearic Sea.Terrigenous sources are believed to be the cause of increasing relative amounts of montmorillonite in surface waters as they flow eastward within the Mediterranean. Montmorillomite is relatively more important in suspended sediments than in bottom sediments where kaolinite—chlorite is dominant.  相似文献   

3.
When long, fast swell waves travel in approximately the same direction as the wind, the surface stress is reduced compared with under wind-sea conditions. Using measurements from the Östergarnsholm site in the Baltic Sea, new expressions of the roughness length were developed for wind sea and swell. These new expressions were implemented in the RCA3 regional climate model covering Europe. A 3-year simulation and two case studies using the wavefield from the ECMWF reanalysis (ERA-40) were analysed using the improved formulations. Wind-following swell led to a significant reduction of mean wind stress and heat fluxes. The mean surface layer wind speed was redistributed horizontally and the marine boundary layer cooled and dried slightly. This cooling was most pronounced over North Sea and the Norwegian Sea (almost 0.2 °C annually on average) whereas the drying was most pronounced over the Mediterranean Sea (almost 0.4 g kg−1). Somewhat less convective precipitation and low-level cloudiness over the sea areas were also indicated, in particular over the Mediterranean Sea. The impact on the atmosphere, however, is significantly locally greater in time and space.  相似文献   

4.
Within the framework of a one-dimensional model taking into account the presence of an upper mixed layer, we compute the seasonal variation of temperature and the concentration of dissolved oxygen in the central part of Lake Kinneret. The temperature conditions of the lake are determined by heat exchange with the atmosphere, and the oxygen conditions depend on gas exchange with the atmosphere and oxygen consumption in sediments as well as on internal sources and sinks. The latter are connected with oxygen supply in the course of photosynthesis and its consumption for the oxidation of labile organic substance in the water thickness. In the period of winter convection from December to February, when the upper mixed layer reaches the bottom, complete aeration of water takes place. The presence of thermal stratification of the lake in the remaining time results in oxygen deficiency under the thermocline.  相似文献   

5.
Mercury speciation and its distribution in surface and deep waters of the Mediterranean Sea were studied during two oceanographic cruises on board the Italian research vessel URANIA in summer 2003 and spring 2004 as part of the Med Oceaneor and MERCYMS projects. The study included deep water profiles of dissolved gaseous Hg (DGM), reactive Hg (RHg), total Hg (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. Average concentrations of measured Hg species were characterized by seasonal and spatial variations. Overall average THg concentrations ranged between 0.41 and 2.65 pM (1.32 ± 0.48 pM) and were comparable to those obtained in previous studies of the Mediterranean Sea. A significant fraction of Hg was present as “reactive” Hg (average 0.33 ± 0.32 pM). Dissolved gaseous Hg (DGM), which consists mainly of Hg0, represents a considerable proportion of THg (average 20%, 0.23 ± 0.11 pM). The portion of DGM typically increased towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea), indicating its geotectonic origin. No dimethyl Hg was found in surface waters down to the depth of 40 m. Below this depth, its average concentration was 2.67 ± 2.9 fM. Dissolved fractions of total Hg and MeHg were measured in filtered water samples and were 0.68 ± 0.43 pM and 0.29 ± 0.17 pM for THg and MeHg respectively. The fraction of Hg as MeHg was in average 43%, which is relatively high compared to other ocean environments. The concentrations reported in this study are among the lowest found in marine environments and the quality of analytical methods are of key importance. Speciation of Hg in sea water is of crucial importance as THg concentrations alone do not give adequate data for understanding Hg sources and cycling in marine environments. For example, photoinduced transformations are important for the presence of reactive and elemental mercury in the surface layers, biologically mediated reactions are important for the production/degradation of MeHg and DGM in the photic zones of the water column, and the data for DGM in deep sea indicate the natural sources of Hg in geotectonicaly active areas of the Mediterranean Sea.  相似文献   

6.
Seventy percent of 342 seawater samples collected in the Bering Sea, North and South Pacific, Japan Sea, East and South China Seas, and Indian Ocean had concentrations of “total” mercury ranging from 3 to 6 ng Hg l?1 with an arithmetic mean of 5.3 ng l?1 and a geometric mean of 5.0 ng l?1. In some cases, a higher concentration was observed at the surface, at the halocline or thermocline, or in the bottom water. But in general, there was no consistent correlation between mercury concentration and depth, except for a statistical tendency for mercury concentration to be slightly higher in the surface water. This tendency suggests that mercury in the ocean is supplied from the atmosphere by rain washout. The latitudinal variation of surface mercury concentrations showed that the maximum concentration at each latitude decreased from 40°N to 30°S. This variation provides evidence that atmospheric mercury is emitted mainly from continental areas naturally or anthropogenically.  相似文献   

7.
Results are rported from experimental and theoretical studies of the energy and mass exchange of a body of water with the atmosphere. A new parametric model has been developed on the basis of experimental data that takes into account the influence of the depth of the basin on evaporation, its heat exchange with the atmosphere, and the water-surface friction at different wind speeds. Comparison of the model with measurements during the LITFASS-98 and LITFASS-2003 experiments (Germany) shows good consistency. The results indicate, on the one hand, that the depth of the basin has a large effect on the intensity of energy exchange under natural conditions. On the other hand, the examples shown in the paper illustrate good agreement of the model calculations with experimental data. On the basis of the experimental data on the influence of the basin depth on the intensity of the interaction between the basin and the atmosphere, a balance model of the energy exchange in the coastal zone has been developed. The balance model calculates the momentum, heat, and moisture fluxes at different distances from the shore. Results of using the new model to estimate the intensification of evaporation and the heat exchange of the northern Caspian and the Kara-Bogaz Gol are discussed.  相似文献   

8.
The study verifies the Black Sea wave model using field data obtained from the Katsiveli research platform. The WAM and mesoscale MM5 and WRF atmospheric models, which are used to calculate the wind field for the wave model, were recently adjusted to the Black Sea region at the Marine Hydrophysical Institute. The results of the work are presented as characteristics of the simulation quality used in world practice in other regions. The scatter index for a significant wave height is 70% in summer and 50% in winter. The values of the scatter index of wave parameters and wind speed appear to be at the same level as in semi-enclosed seas on the northern side of the Mediterranean Sea. It is shown that atmospheric simulation correctly reproduces the interaction between synoptic processes and the mountain range extending alongshore. Error sources in wave simulation are discussed. The most significant drawback is the possibility of mesoscale instability in the atmospheric model without assimilation of observation data within the computational domain.  相似文献   

9.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   

10.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   

11.
利用海平面变化预测模型,预测了渤黄东海未来海平面的上升值。该模型考虑了温室效应和地壳升降。根据潮波运动基本方程和海平面上升的预测值,数值模拟了渤黄东海潮波系统的变化。结果显示,半日分潮(M2,S2)的振幅变化ΔH(或位相变化Δg)有相似的正负分布模式,全日分潮(K1,Q1)的也是如此。考虑和不考虑地壳升降情况下得到的正负分布模式,在黄海存在着较明显的差别,那是由于在黄海存在一个范围很广的海平面变化年速率为负的区域所致。在我国沿岸主要站点,考虑地壳升降情况下获得的主要分潮振幅与不考虑的相比,其中M2分潮的差别最大,其差值范围为-1.8~3.3 cm。在主要站点,利用考虑地壳升降情况下获得的调和常数计算所得的海图深度基准面、最高和最低天文潮位,与利用原调和常数计算所得的相比,海图深度基准面的变化范围为-12.4~14.6 cm,最高天文潮位的变化范围为-11.7~13.0 cm,最低天文潮位的变化范围为-11.9~10.5 cm。  相似文献   

12.
黄、渤海无机氮的收支模式初探   总被引:8,自引:1,他引:8  
根据黄、渤海无机氮的收支状况,首次提出了黄、渤海无机氮的稳态收支模式。模式研究结果表明,大气沉降、陆源输入和海底输入的无机氮通量分别占黄、渤海无机氮浮游植物总需求量的3%、4%和12%。无机氮的外部输入约占总需求量的1/5,其他部分则由水柱中的内部再循环(再生)供给。  相似文献   

13.
Determination of the actual mercury concentration in Mediterranean basin seawater was achieved by means of an instrument based on fluorescence spectrometry developed for this purpose, during a field study aboard the oceanographic ship “L.F. Marsili”, between August 1980 and May 1982.Dissolved ·total’ and ·reactive’ mercury and mercury associated with particulate matter were determined on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Concentrations in the range 1.4–19.7 ng l−1 for ·total dissolved mercury’, 0.5–5.9 ng l−1 for ·reactive dissolved mercury’ and 0.3–8.0 ng l−1 for mercury associated with the particulate matter, were measured on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Even if the mean value of the total mercury concentration (dissolved + particulate) was found to be about twice as high as those observed for the oceans, the difference does not seem to be as high as predicted by the model proposed by Buffoni and co-workers to explain the large difference of mercury levels between tunas caught, respectively, in the Mediterranean and in the Oceans.  相似文献   

14.
Horizontal and vertical distributions of mercury were determined in seawater in Minamata Bay and Yatsushiro Sea. The concentrations of total and particulate mercury respectively ranged from 56–285 ng l–1 and 2.1–506 ng l–1. They were both highest in the inner most part of Minamata Bay where the sediment was most heavily polluted, and decreased with increasing distance from there. Vertically, an evident increase in concentration was observed near the bottom. A good agreement was found between the mercury content in suspended matter and that in fine sediment particles.These facts show that the particulate mercury is supplied mostly from the bottom sediment, and that it is spreading offshore with dispersing in seawater. This process would eventually result in the pollution of sediment in Yatsushiro Sea.  相似文献   

15.
We demonstrate the importance of investigation of the behavior of methane as a source of energy and an element of the Black-Sea ecosystem affecting the global behavior of the climate. We describe the genesis of methane and the processes of its aerobic and anaerobic oxidation. An especially important biogeochemical and ecological role is played by the anaerobic oxidation of methane guaranteeing the formation of its effective sink inside the anaerobic zone and preventing its penetration into the atmosphere as a greenhouse gas. On the basis of the analysis of the experimental data available from the literature, we also discuss the principal regularities of the distribution of concentration of methane and its flows. It is shown that the formation of methane hydrates at the bottom in the abyssal part of the Black Sea and the events of jet gas release on the periphery of the basin can be regarded as the components of a single global process of gas release from the bottom of the Black Sea. We present estimates of the components of methane budget in the Black Sea. The results of simulation of the dynamics of methane bubbles and the processes of their gas exchange with the medium are analyzed. The data of hydroacoustic measurements are used to evaluate the distribution of methane bubbles in sizes and the mass transfer of methane through the ocean–atmosphere interface. Finally, we consider the methods of mathematical simulation of the distribution of methane in the ecosystem of the Black Sea. Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 40–56, September–October, 2008.  相似文献   

16.
Water exchange between a semiclosed bay and the adjacent sea, and its relation to atmospheric forcing is examined from a field experiment undertaken in the Bay of Kaštela (Adriatic Sea, Yugoslavia). Four ‘Aanderaa’ RCM4 current meters were attached on a single mooring in a 45 m deep inlet of the Bay for about two months. Water samples were taken for phytoplankton and bacteria determination at several additional stations. Salinity, temperature measurements, and determinations of the Secchi-disc depth were also made. Samples were taken approximately each week during the current measurement period so as to resolve the synoptic time scale. In the first part of the current measurement period the water was stratified, while in the second part the entire water column became vertically mixed after a strong wind event. During stratified conditions kinetic energy was at a maximum in the intermediate layer, while during homogeneous conditions the kinetic energy was trapped mainly in the bottom layer. Vertical modal structure of the current field showed that during homogeneous conditions wind induced surface flow was 180° out of phase with respect to the bottom flow. The current reversal appeared at the depth between 8 and 20 m. Under stratified conditions the surface flow was in phase with the bottom flow and water entered the Bay on one side of the inlet in the whole water column and left on the other side. These water exchange structures were reflected in the horizontal distribution of density, bacteria, Secchi-disc data and phytoplankton composition.  相似文献   

17.
Gypsum solubility in mixtures of Dead Sea and Mediterranean Sea waters at different ratios and in their concentrates obtained by evaporation simulation have been calculated using the Pitzer model as formulated by Harvie and Weare (1980). The results obtained are compared with available experimental gypsum solubility data in different natural brines, sea water, sea water concentrates and NaCl solutions. The agreement between theoretically calculated and experimental solubility values is fairly good and is within the range of scatter of the individual solubility measurements.  相似文献   

18.
This paper concerns mathematical modeling of the processes of false bottom evolution taking into account water freezing in the opposite direction from the cooled boundary with the atmosphere. The model of the crystallization process is based on the two-phase zone theory complicated by the moving boundaries of phase transitions and turbulent flows of fluid in the ocean near the false bottom boundary. Analytical solutions of the nonlinear problem are found (the distributions of the temperature and the salinity, the proportion of the solid fraction, the laws of the motion of the boundaries between the phase transitions, and the heat fluxes) and a comparative analysis of the results with the field data observations is performed. It is shown that the heat flux caused by the growing false bottom makes a significant contribution to the heat exchange processes between the ocean and the atmosphere.  相似文献   

19.
Coastal marine sediment, air and seawater samples were collected at six sampling stations in the Eastern Mediterranean Sea distant from pollutant point sources. All sediment samples were analyzed to determine polycyclic aromatic hydrocarbon (PAH), black carbon (BC) and organic carbon (OC) contents. The PAH contents of gaseous and seawater samples of the study were determined in order to evaluate the role of air–sea exchange as PAH nonpoint source to the marine sediments. The average concentration of the total PAHs (∑PAHs) in the sediments varied from 2.2 to 1056.2 ng g−1 dry weight. The average BC and OC contents varied from 0.3 to 5.6 and from 2.9 to 21.4 mg g−1 dry weight, respectively. ∑PAH concentration in the marine atmosphere varied from 20.0 to 83.2 ng m−3. Air–water exchange flux (FA–W) estimation has indicated air transport as a significant source of PAHs to pristine marine sediments of Eastern Mediterranean. In addition, the significant correlation between the PAHs and the organic and soot carbon content further suggests the importance of atmospheric input of PAHs to the sediments.  相似文献   

20.
The hydrological regime of the Black Sea in the conditions of permanent alternation of atmospheric circulation processes was investigated on the basis of a baroclinic prognostic model of the sea dynamics. In the model, variations in the wind action were expressed as permanent alternation of 24 wind types characteristic of the Black Sea basin throughout the year. Thermohaline impact of the atmosphere was taken into account by specifying the annual trends of temperature and salinity at the sea surface, which was established from multiyear means of these parameters. The problem was solved numerically on the basis of the method of two-cycle splitting with the use of the grid with a horizontal spacing of 5 km. Results of the numerical experiment showed that, under the influence of a strong nonstationarity of atmospheric processes, the water circulation in the upper layer of the Black Sea changes qualitatively and quantitatively. The upper 20–30-m layer of the sea is particularly sensitive to atmospheric circulation variations. For any character of atmospheric circulation, the Black Sea circulation below this layer is nearly always cyclonic with internal cyclonic rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号