首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A highly sensitive and specific enzyme immunoassay (EIA) is described for the detection of the atrazine metabolite hydroxyatrazine. Polyclonal antibodies were raised in rabbits by immunization with a hapten-bovine serum albumin (BSA) conjugate containing 8 hapten residues per molecule of BSA. An EIA with a horseradish peroxidase (HRP) hapten tracer was optimized in microtitre plates. A concentration of 50% B/B0 was found at 0.10 μg/L for hydroxyatrazine. A limit of determination for hydroxyatrazine was reached at approximately 0.01 μg/L, i.e. well below the maximum concentration permitted by the EU guidelines for drinking water and the drinking water ordinance of the FRG. The assay did not require concentration or clean-up steps for drinking water or ground water samples. Validation experiments confirmed a good accuracy and precision. Hydroxyatrazine is reported to be the main atrazine metabolite found in soil samples. As organic solvents are usually employed for soil extraction, the influence of methanol as representative organic solvent on the assay was examined. Up to a concentration of 5% (v/v) methanol, the organic solvent did not affect the assay.  相似文献   

2.
Rain and surface water samples from Southern Germany were investigated from 1991 to 1995 for terbuthylazine and one of its major metabolites, deethylterbuthylazine. The concentrations observed were compared to the concentrations found for atrazine and deethylatrazine in the same water samples. Concentrations ranged from < 0.02 μg/L to 0.7 μg/L for terbuthylazine and from < 0.02 μg/L to 0.6 μg/L for deethylterbuthylazine, compared to concentrations of < 0.02 μg/L to 3 μg/L and < 0.02 μg/L to 0.5 μg/L for atrazine and deethylatrazine, respectively. The ratios of metabolite concentrations to parent compound concentrations were calculated for deethylterbuthylazine to terbuthylazine (DTR) and deethylatrazine to atrazine (DAR). In rain water, DTR of 0.8…3.0 and DAR of 0.3… 1.9 were determined with mean values of 0.9… 1.7 for DTR and 0.6…0.9 for DAR in the different years. The ratios increased during summer periods. The highest ratios were observed in samples from forest stands, showing that degradation of the herbicide has occurred during transport between the source and the sampling site. The DTR in rain water were about 50… 100% higher than the DAR. This indicates a higher degradation rate of terbuthylazine during atmospheric transport. In surface water, DTR of 0.3… 1.2 with mean values of 0.5…0.8 and DAR of 0.2…2.2 with mean values of 0.2… 1.3 were observed. The ratios increased from June to September.  相似文献   

3.
A miniaturized ultrasonic extraction procedure was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil by gas chromatography‐mass spectrometry. After determination of the most suitable extraction solvent with 5 min sonication time, several other parameters (sample amount, solvent volume and number of extraction times) were optimized using a 23 factorial experimental design. Recoveries of PAHs from spiked soil samples were over 90% for three different fortification levels between 50 and 300 μg/kg, and relative standard deviations of the recoveries were in the range of < 1–15%. The limits of detection ranged from 0.002 to 1.87 μg/kg. The performance of the developed procedure was also compared with other traditional Soxhlet, shake flask and large scale ultrasonic extraction procedures on real soil samples, and extraction methods showed comparable efficiencies. The proposed procedure required small volumes of solvent and sample. It was practicable, rapid and easy to use for analysis of PAHs in soils.  相似文献   

4.
A new analytic methodology based on the cloud point extraction coupled with HPLC (CPE‐HPLC) was developed and successfully applied to determination of the pesticides isoproturon (IPU) and prometryne (PRO) from multi‐media (contaminated water, soil, and food vegetable). Several non‐ionic surfactants including poly ethylene glycol 6000 (PEG‐6000), TritonX‐114, and Triton X‐100 were comparatively analyzed as extraction solvents. Other parameters such as surfactant concentration, ionic strength, and equilibration temperature, and duration were also investigated. The optimal conditions for CPE were presented with 2.4% w/v PEG‐6000, 11% w/v Na2SO4 and heating assistance at 50°C for 25 min. The calibration curves for the two analytes were linear ranging from 0.001 to 10.0 mg L?1, with correlation coefficients being 0.99 determined by a HPLC–UV detector. Under the condition, the average recoveries were 85.4–90.6% for water, 84.4–92.7% for soil, and 84.4–92.1% for vegetable. Thus, the method presented here was proved to be rapid, efficient, and green for extraction and determination of isoproturon and prometryne residues from food and multi‐environmental media.  相似文献   

5.
Private wells in Cayuga and Orange counties in New York were sampled to determine the occurrence of pesticide contamination of groundwater in areas where significant pesticide use coincides with shallow or otherwise vulnerable groundwater. Well selection was based on local groundwater knowledge, risk modeling, aerial photo assessments, and pesticide application database mapping. Single timepoint samples from 40 wells in each county were subjected to 93‐compound chromatographic scans. All samples were nondetects (reporting limits ≤1 μg/L), thus no wells from either county exceeded any of 15 state groundwater standards or guidance values. More sensitive enzyme‐linked immunosorbent assays (ELISA) found two wells with quantifiable atrazine in each county (0.1–0.3 μg/L), one well with quantifiable diazinon (0.1 μg/L) in Orange County, and one well with quantifiable alachlor (0.2 μg/L) in Cayuga County. Trace detections (<0.1 μg/L) in Cayuga County included atrazine (five wells), metolachlor (six wells), and alachlor (one well), including three wells with multiple detections. All 12 Cayuga County wells with ELISA detections had either corn/grain or corn/forage rotations as primary surrounding land uses (although 20 other wells with the same land uses had no detections) and all quantified detections and most trace detections occurred in wells up to 9‐m deep. Orange County trace (<0.1 μg/L) ELISA detections (atrazine three wells, diazinon one well, and metolachlor five wells) and quantified detections were only generally associated with agricultural land uses. Finding acceptable drinking water quality in areas of vulnerable groundwater suggests that water quality in less vulnerable areas will also be good.  相似文献   

6.
Competitive solid phase enzyme immunoassays using polyclonal antibodies were developed for the detection of the phenoxycaboxylic acids MCPB [4-(4-chloro-2-methylphenoxy)butyric acid], Mecoprop [2-(4-chloro-2-methylphenoxy)propionic acid], and 2,4-D [(2,4-dichloro-phenoxy)acetic acid] in drinking water and ground water. The carrier protein for the immunization was bovine serum albumin, horseradish peroxidase conjugates were employed as enzyme tracer. For the three antisera, the optimization of detection limits and test sensitivities was our first consideration. For the mecoprop and 2,4-D antisera, the strongest influences were the pH value and the ionic strength, as much as the use of enzyme tracers with lower affinities. The MCPB antiserum reacted with 2,4-DB[4-(2,4-dichlorophenoxy)butyric acid] with equal specificity, either could be detected at 0.02 μg/L (80% B/B0), middle of the test (50 B/B0) lying at 0.1 μg/L. The detection limit with mecoprop antiserum was optimized to 0.02 μg/L, the prescribed limit for drinking water of 0.1 μg/L ling at 60 % B/B0. The strongest cross-reactivity was found for mecoprop methyl ester. MCPB. 2,4-DB, and dichloroprop have crossreactivities of 50%, 6.7%, and 6.3%, respectively. The 2,4-D antiserum reacts less sensitively with 2,4-D, the detection limit being 0.4 μg/L. The 2,4-D isooctyl ester and 2,4-D methyl ester demonstrate as cross-reacting compounds high cross-reactivites of 3630% and 2230%. The cross-reactions of the compounds 2,4-DB, MCPB, and MCPA [(4-chloro-2-methylphenoxy)acetic acid] lie at 52%, 69%, and 41%. 100 ground water tests were spiked within laboratory. All positive samples were correctly identified. Falsely negative results did not appear.  相似文献   

7.
Assessment and Modification of Arsenic Mobility in Contaminated Soil Arsenic concentration in the seepage of contaminated soils of an old tannery site is assessed using batch and column experiments. The effect of reducing conditions, pH, and ionic strength is also investigated. The iron oxide rich subsoil (C‐horizon) is the main source of groundwater pollution with arsenic. In this horizon, mobilization can increase as a result of reducing conditions upon periodical water saturation. Therefore, the potentially mobile arsenic is determined by a reductive dissolution of the poorly crystalline iron oxide fraction using 0.1 M ascorbic acid. Arsenic concentration can be reduced from 100 μg/L to below 20 μg/L by an increase of ionic strength (e.g. by a 0.01 M CaCl2 solution). Arsenic contaminated soils should be limed regularly in order to maintain the highest possible calcium concentration in the soil solution.  相似文献   

8.
Determination of Organophosphorus Pesticides in Water by HPLC‐MS‐MS In the EC Water Framework Directive 2000/60/EG and in CEC 76/464/EEC there are 16 organophosphorus pesticides (insecticides and acaricides) listed which belong to so‐called priority substances. The committed quality aims of these substances frequently require maximum concentrations below 0.1 μg/L. In this paper a HPLC‐MS‐method is described. The reported limits of determination of organophosphorus pesticides are lower than the demanded limits. High analytical sensitivity is reached by solid‐phase extraction (SPE) and by injecting large volumes. For some of these substances no sample enrichment is needed and low detection limits are obtained by direct injection of the original water sample.  相似文献   

9.
Development of an Enzyme Immunoassay for the Detection of Mecoprop in Drinking Water and Groundwater Based on Antibodies Raised in Chicken Egg Yolk Antibodies against mecoprop were isolated from egg yolk of immunized hens and were used for the development of an enzyme-linked immunosorbent assay. We tested assay parameters (pH and concentration of buffer, incubation temperature, kind of enzyme tracer) to optimize the standard curve for mecoprop. By decreasing the pH, the detection limit was reached at a concentration of 0.35 μg/L mecoprop. The concentration for 50% inhibition (50% B/B0) was 2.8 μg/L. Dichlorprop and the methyl esters of both mecoprop and dichlorprop showed high crossreactivity (165%, 400% and 233%). Antibodies against mecoprop separated from egg yolk were compared to antibodies raised in rabbit for both sensitivity and specificity. Chicken immunoglobulins were found to be less sensitive and specific than the mammalian IgG's.  相似文献   

10.
This study evaluates the efficiency of a full‐scale, 81 m‐wide permeable reactive barrier (PRB) configured by injection of dairy whey in the downgradient region of a contaminant source zone to enhance the in situ biodegradation of high concentrations (102 to 103μg/L) of chlorinated ethenes (CEs). Ten biannual whey injections were completed in a 3.5‐year pilot phase and 1.5‐year operational phase. Improved and sustained dechlorination was observed at extraction/injection and downgradient wells in the fully‐operational phase, when dried whey masses were increased from 13.6 kg to 230–360 kg, whey slurry volumes were increased from 2300 L to 307,000–480,000 L, and extraction/injection well loops were employed for the application of whey. At extraction/injection wells, CEs decreased to low (≤10 μg/L) or undetectable levels. At downgradient wells, average trichloroethene concentrations decreased, by as much as 100% (from ≤384.2 during the pilot phase to ≤102.6 μg/L during the operational phase), while average cis‐dichloroethene concentrations decreased by as much as 57.5% (from ≤6466.1 to ≤4912.2 μg/L). Downgradient vinyl chloride averages either increased by as much as 63.8% (from ≤859.6 to ≤1407.9 μg/L) or decreased by 64.0% (from 1375.4 to 880 μg/L). Downgradient ethene + ethane averages increased by as much as 73.2% (from ≤1145.3 to ≤1347.1 μg/L). On the basis of the 2008 average market price, the estimated material cost of whey is $1.96/kg organic carbon or, for the configuration of an 81 m PRB by biannual application of 300 kg whey, $325/year. Carbon substrate cost comparisons and implications for efficient in situ treatment design are discussed.  相似文献   

11.
Occurrence of Industrial Chemicals (HPS, BPS, and SPS) in Surface Water The paper gives the results of water examinations for different phenylsulfonamides. Random samples taken every month between May 1999 and August 2000 from surface water out of the river Rhine (kilometer 838), the river Ruhr (Mülheim Styrum) and the river Emscher (Oberhausen center) were tested for the corrosion inhibiting agent 6‐[methyl(phenylsulfonyl)amino]‐hexanoic acid (HPS) as well as its metabolites 4‐[methyl‐(phenylsulfonyl)amino]‐butanoic acid (BPS) and sarkosin‐N‐(phenylsulfonyl) (SPS). Furthermore, the sewage plant effluents of two municipal wastewater treatment plants from the rural area were also included in the monitoring program. The analytical method includes solid‐phase extraction (SPE), a derivatization step as well as gas chromatography mass spectrometry (GC‐MS). SPS is regularly found in all investigated surface waters, but only occasionally in the effluents of the two rural sewage plants. The median values for SPS amount to 0.09 μg/L in the river Rhine, 0.60 μg/L in the river Ruhr, and 0.70 μg/L in the river Emscher. BPS can only be found in the river Ruhr (median value: 0.08 μg/L) and in the river Emscher (median value: 0.41 μg/L). HPS was regularly found in a surface water for the first time. This substance can be detected in the Emscher through the whole measurement period. The median value for HPS amounts to 1.78 μg/L. Aditionally, the validation characteristics of an alternative analytical method including solid‐phase microextraction (SPME) is worked out. The fully automated process includes an on‐fiber methylation step and the GC‐MS. The repeatability standard deviation of the process amounts to RSD < 12%. Detection limits between 0.07 and 0.70 μg/L are achieved.  相似文献   

12.
Ground water in a residential area of Perth. Western Australia, was contaminated with fenamiphos and atrazine. probably as a result of the storage and handling of these chemicals at a residential properly. Sampling of existing wells indicated that atrazine and fenamiphos concentrations in ground water beneath a neighboring property were 2000 μg/L and 1000 μg/L, respectively. Fenamiphos concentrations were sufficiently high to be toxic on prolonged skin contact, and contamination posed a public health threat to nearby residents with private wells. Management of the contamination problem included restricting ground water use in the area and using a recovery well to pump contaminated ground water.  相似文献   

13.
Leachate, ground-, and surface water from former ammunition sites and areas which are known to be contaminated by nitroaromatic compounds in Lower Saxony (Germany) were investigated in order to identify and quantify acidic nitroaromatic compounds (e.g., nitrobenzoic acids, aminonitrobenzoic acids, nitrophenols, and nitrocresols). Acidic and neutral nitroaromatic compounds were enriched by solid-phase extraction (SPE) on a polystyrenedivinylbenzene copolymer and routinely screened for acidic compounds by means of HPLC/photodiode array detection (HPLC/PDA). Qualitative and quantitative results obtained in this way were corroborated by proton nuclear magnetic resonance spectroscopy (1H-NMR). Validation data for the quantification procedure using this technique are given. The results show that all samples contaminated with 2,4,6-trinitrotoluene (TNT) and related compounds are also contaminated by acidic nitroaromatic compounds (e.g., 2,4-dinitrobenzoic acid, 3,5-dinitrophenol, and especially with 2-amino-4,6-dinitrobenzoic acid) in the μg/L range. This current work shows that 1 H-NMR allows the quantitative determination of protoncarrying analytes in mixtures after solid-phase extraction down to the upper ng/L range after addition of an internal standard to the SPE extract. This is even possible when reference compounds are not commercially available.  相似文献   

14.
Agrichemical transport to coastal waters may have adverse ecological impact. This work examined atrazine fate and transport in a field adjacent to Puerto Rico’s Jobos Bay National Estuarine Research Reserve. The herbicide’s use was linked to residue detection in shallow groundwater and movement toward the estuary; however, data indicated that transport via this pathway was small. In contrast, surface runoff as tropical storm systems moved through the area appeared to have high potential for atrazine transport. In this case, transport to the estuary was limited by runoff event timing relative to atrazine application and very rapid atrazine dissipation (DT50 = 1–3 days) in field soil. Soil incubation studies showed that accelerated degradation conditions had developed in the field due to repeated atrazine treatment. To improve weed management, atrazine replacement with other herbicide(s) is recommended. Use of products that have greater soil persistence may increase runoff risk.  相似文献   

15.
The paper describes the state of a standardized method for the determination of polycyclic aromatic hydrocarbons (PAH) in water, sludges, sediments, and soils by high performance liquid chromatography (HPLC). The separation of PAH on different specific PAH-columns is illustrated and the chromatographic conditions in relation to the subsequent programmed fluorescence detection are displayed. A method for the treatment of soil samples using a simple but efficient extraction method by ultrasonication using tetrahydrofuran or acetonitrile as extractants is presented. By means of selected samples, it is demonstrated that the extractive recovery rates of the presented method can compete with those of the conventional soxhlet extraction.  相似文献   

16.
Gao Y  Fang J  Zhang J  Ren L  Mao Y  Li B  Zhang M  Liu D  Du M 《Marine pollution bulletin》2011,62(8):1628-1631
The impact of the widely used herbicide atrazine on seedling growth and photosynthesis of eelgrass was determined. The long-term impact of the herbicide atrazine (1, 10 and 100 μg/L) on growth of eelgrass Zostera marina (L.) seedlings, maintained in outdoor aquaria, was monitored over 4 weeks. Exposure to 10 μg/L atrazine resulted in significantly lower plant fresh weight and total chlorophyll concentration and up to 86.67% mortality at the 100 μg/L concentration. Short-term photosynthetic stress on eelgrass seedlings was determined and compared with adult eelgrass using chlorophyll fluorescence. The effective quantum yield in eelgrass seedlings was significantly depressed at all atrazine concentrations (2, 4, 8, 16, 32 and 64 μg/L) even within 2 h and remained at a lower level than for adult plants for each concentration. These results indicate that atrazine presents a potential threat to seagrass seedling functioning and that the impact is much higher than for adult plants.  相似文献   

17.
A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag+ and Pd2+ in various samples. After complexation with 2‐((2‐((1H‐benzo[d]imidazole‐2‐yl)methoxy)phenoxy)methyl)‐1H‐benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X‐114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0·10–5 mol/L BIMPI and 0.036% (w/v) Triton X‐114), calibration graphs were linear in the range of 28.0–430.0 μg/L and 57.0–720.0 μg/L with detection limits of 10.0 and 25.0 μg/L for Ag+ and Pd2+, respectively. The enrichment factors were 35.0 and 28.0 for Ag+ and Pd2+, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples.  相似文献   

18.
This study investigated the development of pesticide pollution two, three, and 17 years after spills of the herbicides dichlorprop, mecoprop (MCPP), MCPA, 2,4‐D (phenoxy acids), simazine, and terbutylazine (triazines) in a former orchard machinery service yard. The spills had occurred over several decades on a 23‐m thick, mainly anaerobic fractured clayey till aquitard. Angled monitoring wells were installed in the aquitard 3 years after the spills ceased in 1989. In 1993, monitoring revealed that high groundwater concentrations of dichlorprop (677 µg/L) and MCPP (139 µg/L) were accumulated as a zone of maximum pollution in anaerobic and largely immobile pore water at 5 to 6 m depth in the aquitard profile. In contrast, 2,4‐D was determined in only one water sample, and MCPA and simazine and terbutylazine were determined only in low concentrations (below10 µg/L), although these pesticides had been handled at the site in greater amounts than dichlorprop and MCPP according to detailed historic information obtained for the site. Repeated monitoring in the same wells after a further 14 years in 2007 revealed that no identifiable degradation of MCPP had occurred, while dichlorprop had degraded by 75% to 80% (estimated half‐life of approximately 5 years). Furthermore, degradation products related to the phenoxy acids had accumulated, especially 4‐CPP with a maximum concentration of 218 µg/L. In the same zone, MCPA and simazine had almost disappeared. As the pollution was mainly accumulated in largely immobile pore water of the aquitard clayey matrix, and the groundwater recharge was low (30 to 60 mm/year), only minor vertical displacement of the zone with maximum pollution zone had occurred during the 15 years of monitoring. However, concentrations of dichlorprop (0.01 to 0.02 µg/L), MCPP (0.1 to 0.2 µg/L), and 4‐CPP (0.6 to 0.7 µg/L) had spread along textural heterogeneities in the aquitard into the underlying sandy aquifer at 23‐m depth.  相似文献   

19.
Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air–oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air–oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in situ biodegradation in the vadose zone. Thus, aquifer and soil remediation can be achieved at a shorter time. Rough calculations suggest that LNAPL can be recovered at an approximate cost of $6–$10/l.  相似文献   

20.
— Atmospheric particulate concentration for total suspended particles (TSP) and for PM10 (particulate matter under 10 micron) was measured in Jalan Braga and ITB campus, Bandung. Six samples were collected over one- or two-day time periods using High Volume Sampler (HVS) for TSP and Low Volume Sampler (LVS) or Anderson Cascade Impactor for PM10. Samples were further analyzed to determine concentrations of metals, sulfate and nitrate. Concentration of NOx (NO and NO2) was also measured hourly and simultaneously during the sampling period. The results from this study show that the atmospheric particulate concentration in Jalan Braga for TSP ranged from 304.04 to 363.17, and for PM10 concentration ranged from 277.02 to 336.44 μg/m3. The lead concentrations were 1.42–2.37 μg/m3 in the TSP and 0.81–1.57 μg/m3 in the PM10. The nitrate concentrations were 5.89–6.51 μg/m3 and 2.27–3.45 μg/m3 for the TSP and PM10, respectively. The hourly NOx concentration varied between 0.14–0.35 ppm. The total elements (metals, sulfate and nitrate) found in the samples contribute from 20 to 25% of the total particulate concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号