首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The Southern Andes differ significantly from the Central Andes with respect to topography and crustal structures and are, from a geophysical point of view, less well known. In order to provide insight into the along-strike segmentation of the Andean mountain belt, an integrated 3-D density model was developed for the area between latitudes 36°S and 42°S. The model is based on geophysical and geological data acquired in the region over the past years and was constructed using forward density modelling. In general, the gravity field of the South American margin is characterized by a relatively continuous positive anomaly along the coastline and the forearc region, and by negative anomalies along the trench and the volcanic arc. However, in the forearc region of the central part of the study area, located just to the south of the epicentre of the largest ever recorded earthquake (Valdivia, 1960), the trench-parallel positive anomaly is disrupted. The forearc gravity anomaly differences thus allow the study area to be divided into three segments, the northern Arauco-Lonquimay, the middle Valdivia-Liquiñe, and the southern Bahía-Mansa-Osorno segment, which are also evident in geology. In the proposed model, the observed negative gravity anomaly in the middle segment is reproduced by an approximately 5 km greater depth to the top of the slab beneath the forearc region. The depth to the slab is, however, dependent upon the density of the upper plate structures. Therefore, both the upper and lower plates and their interaction have a significant impact on the subduction-zone gravity field.  相似文献   

6.
In young suduction zones we observe steady uplift of island arcs. The steady uplift of island arcs is always accompanied by surface erosion. The long duration of uplift and erosion effectively transports heat at depth to shallower parts by advection. If the rates of uplift and erosion are sufficiently large, such a process of heat transportation will strongly affect thermal structure in subduction zones. First, we quantitatively examine the effects of uplift and erosion on thermal structure by using a simple 1-D heat conduction model, based on the assumption that the initial thermal state is in equilibrium. The results show that temperature increase, Δ T  , due to uplift and erosion can be approximately evaluated by Δ T  = ν e tβ at depth, where ν e is the rate of uplift (erosion), t is the duration of uplift (erosion), and β is the gradient of the geotherm in the initial state. Next, considering the effects of vertical crustal movements such as uplift and erosion in island arcs and subsidence and sedimentation in ocean trenches, in addition to the effects of radioactive heat generation in the crust, frictional heating at plate boundaries and accretion of oceanic sediments to overriding continental plates, we numerically simulate the evolution process of the thermal structure in subduction zones. The result shows that the temperature beneath the island arc gradually increases as a result of uplift and erosion as plate subduction progresses. Near the ocean trench, on the other hand, the low-temperature region gradually expands as a result of sedimentation and accretion in addition to direct cooling by the cold descending slab. The surface heat flow expected from this model is low in fore-arc basins, high in island arcs and moderately high in back-arc regions.  相似文献   

7.
8.
9.
10.
The North Canterbury region marks the transition from Pacific plate subduction to continental collision in the South Island of New Zealand. Details of the seismicity, structure and tectonics of this region have been revealed by an 11-week microearthquake survey using 24 portable digital seismographs. Arrival time data from a well-recorded subset of microearthquakes have been combined with those from three explosions at the corners of the microearthquake network in a simultaneous inversion for both hypocentres and velocity structure. The velocity structure is consistent with the crust in North Canterbury being an extension of the converging Chatham Rise. The crust is about 27 km thick, and consists of an 11 km thick seismic upper crust and 7 km thick seismic lower crust, with the middle part of the crust being relatively aseismic. Seismic velocities are consistent with the upper and middle crust being composed of greywacke and schist respectively, while several lines of evidence suggest that the lower crust is the lower part of the old oceanic crust on which the overlying rocks were originally deposited.
The distribution of relocated earthquakes deeper than 15 km indicates that the seismic lower crust changes dip markedly near 43S. To the south-west it is subhorizontal, while to the north-east it dips north-west at about 10. Fault-plane solutions for these earthquakes also change near 43S. For events to the south, P -axes trend approximately normal to the plate boundary (reflecting continental collision), while for events to the north, T -axes are aligned down the dip of the subducted plate (reflecting slab pull). While lithospheric subduction is continuous across the transition, it is not clear whether the lower crust near 43S is flexed or torn.  相似文献   

11.
12.
The thermomechanic evolution of the lithosphere–upper mantle system during Calabrian subduction is analysed using a 2-D finite element approach, in which the lithosphere is compositionally stratified into crust and mantle. Gravity and topography predictions are cross-checked with observed gravity and topography patterns of the Calabrian region. Modelling results indicate that the gravity pattern in the arc-trench region is shaped by the sinking of light material, belonging to both the overriding and subduction plates. The sinking of light crustal material, up to depths of the order of 100–150 km is the ultimate responsible for the peculiar gravity signature of subduction, characterized by a minimum of gravity anomaly located at the trench, bounded by two highs located on the overriding and subducting plates, with a variation in magnitude of the order of 200 mGal along a wavelength of 200 km, in agreement with the isostatically compensated component of gravity anomaly observed along a transect crossing the Calabrian Arc, from the Tyrrhenian to the Ionian Seas. The striking agreement between the geodetic retrieved profiles and the modelled ones in the trench region confirms the crucial role of compositional stratification of the lithosphere in the subduction process and the correctness of the kinematic hypotheses considered in our modelling, that the present-day configuration of crust–mantle system below the Calabrian arc results from trench's retreat at a rate of about 3 cm yr−1, followed by gravitational sinking of the subducted slab in the last 5 Myr.  相似文献   

13.
Earthquake arrival time data from a 36-station deployment of portable seismographs on the Raukumara Peninsula have been used to determine the 3-D Vp and Vp/Vs structure of this region of shallow subduction. A series of inversions have been performed, starting with an inversion for 1-D structure, then 2-D, and finally 3-D. This procedure ensures a smooth regional model in places of low resolution. The subducted plate is imaged as a northwest-dipping feature, with Vp consistently greater than 8.5  km  s−1 in the uppermost mantle of the plate. Structure in the overlying plate changes significantly along strike. In the northeast, there is an extensive low-velocity zone in the lower crust underlying the most rapidly rising part of the Raukumara Range. It is bounded on its arcward side by an upwarp of high velocity. A viable explanation for the low-velocity zone is that it represents an accumulation of underplated subducted sediment, while serpentinization of the uppermost mantle may be responsible for the adjacent high-velocity region. The low-velocity zone decreases and the adjacent high-velocity region is less extensive in the southwest. This change is interpreted to be related to a change in the thickness of the crust of the overlying plate. In the northeast the crust is thinner, and subducted sediment ponds against relatively strong uppermost mantle, while in the southwest the crust is thicker, and the relatively weak lower crust allows sediment subduction to greater depths. A narrow zone of high Vp/Vs parallels the shallow part of the plate interface. This suggests elevated fluid pressures, with the distribution of earthquakes about this zone further suggesting that these pressures may be close to lithostatic. The plate interface at 20  km depth beneath the Raukumara Peninsula may thus be a closed system for fluid flow, similar to that seen at much shallower depths in other subduction décollements.  相似文献   

14.
We present a series of 2-D numerical models of viscous flow in the mantle wedge induced by a subducting lithospheric plate. We use a kinematically defined slab geometry approximating the subduction of the Philippine Sea plate beneath Eurasia. Through finite element modelling we explore the effects of different rheological and thermal constraints (e.g. a low-viscosity region in the wedge corner, power law versus Newtonian rheology, the inclusion of thermal buoyancy forces and a temperature-dependent viscosity law) on the velocity and finite strain field in the mantle wedge. From the numerical flow models we construct models of anisotropy in the wedge by calculating the evolution of the finite strain ellipse and combining its geometry with appropriate elastic constants for effective transversely isotropic mantle material. We then predict shear wave splitting for stations located above the model domain using expressions derived from anisotropic perturbation theory, and compare the predictions to ∼500 previously published shear wave splitting measurements from seventeen stations of the broad-band F-net array located in southwestern Japan. Although the use of different model parameters can have a substantial effect on the character of the finite strain field, the effect on the average predicted splitting parameters is small. However, the variations with backazimuth and ray parameter of individual splitting intensity measurements at a given station for different models are often different, and rigorous analysis of details in the splitting patterns allows us to discriminate among different rheological models for flow in the mantle wedge. The splitting observed in southwestern Japan agrees well with the predictions of trench-perpendicular flow in the mantle wedge along with B-type olivine fabric dominating in a region from the wedge corner to about 125 km from the trench.  相似文献   

15.
16.
At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction contact: one based on a fault and the other based on a subduction channel. Using a finite element method, we determine the specific signatures of both states of the subduction contact. We pay particular attention to the overriding plate. In a tectonic setting of converging plates, where the subducting plate is freely moving, the subduction channel reduces compression relative to the fault model. In a land-locked basin setting, where the relative motion between the far field of the plates is zero, the subduction channel model produces tensile stress regime in the overriding plate, even though the amount of slab roll-back is small. The fault model shows a stronger development of slab roll-back and a compressive stress regime in the upper plate. Based on a consistent comparison of fault and channel numerical models, we find that the nature of the plate contact is one of the controlling factors in developing or not of backarc extension. We conclude that, the type of plate contact plays a decisive role in controlling the backarc state of stress. To obtain backarc extension, roll-back is required as an underling geodynamic process, but it is not always a sufficient condition.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号