首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spatial structure and stability properties of the coupled Alfvén and drift compressional modes in a space plasma are studied in a gyrokinetic framework in a model taking into account field-line curvature and plasma and magnetic field inhomogeneity across the magnetic shells. The perturbation is found to be localized in two transparent regions, the Alfvén and drift compressional transparent regions, where the wave vector radial component squared is positive. Both regions are bounded by the resonance and cut-off surfaces, where the wave vector radial component turns into infinity and zero, respectively. An existence of the drift compressional resonance is one of the most important results of this work. It is argued that on the surface of this resonance the longitudinal and azimuthal components of the wave's magnetic field have a pole and logarithmic singularities, respectively. The instability conditions and expressions for the growth rate of the coupled modes have been obtained. In the Alfvénic transparent region, an instability occurs in the presence of the negative plasma temperature gradient. This instability does not lead to a non-stationary wave behavior: all the energy gained from the resonance particles was finally absorbed owing to any dissipation process. In a drift compressional transparent region, a necessary condition for the instability is the growth of the temperature with the radial coordinate. The growth rate is almost independent of the radial coordinate, which means that the wave energy gained from the particles cannot disappear. It will lead to an ever increasing wave amplitude, and no stationary picture for the unstable drift compressional mode is possible.  相似文献   

2.
In June 2006 Venus Express crossed several times the outer boundary of Venus induced magnetosphere, its magnetosheath and its bow shock. During the same interval the Cluster spacecraft surveyed the dawn flank of the terrestrial magnetosphere, intersected the Earth's magnetopause and spent long time intervals in the magnetosheath. This configuration offers the opportunity to perform a joint investigation of the interface between Venus and Earth's outer plasma layers and the shocked solar wind. We discuss the kinetic structure of the magnetopause of both planets, its global characteristics and the effects on the interaction between the planetary plasma and the solar wind. A Vlasov equilibrium model is constructed for both planetary magnetopauses and provides good estimates of the magnetic field profile across the interface. The model is also in agreement with plasma data and evidence the role of planetary and solar wind ions on the spatial scale of the equilibrium magnetopause of the two planets. The main characteristics of the two magnetopauses are discussed and compared.  相似文献   

3.
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing, and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic  ( γ =5/3)  . Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance  ℳr≳0.01  undergo shocks within a distance of order the resonance radius.  相似文献   

4.
We analyze the behavior of the outer envelope in a massive star during and after the collapse of its iron core into a protoneutron star (PNS) in terms of the equations of one-dimensional spherically symmetric ideal hydrodynamics. The profiles obtained in the studies of the evolution of massive stars up to the final stages of their existence, immediately before a supernova explosion (Boyes et al. 1999), are used as the initial data for the distribution of thermodynamic quantities in the envelope. We use a complex equation of state for matter with allowances made for arbitrary electron degeneracy and relativity, the appearance of electron-positron pairs, the presence of radiation, and the possibility of iron nuclei dissociating into free nucleons and helium nuclei. We performed calculations with the help of a numerical scheme based on Godunov's method. These calculations allowed us to ascertain whether the emersion of the outer envelope in a massive star is possible through the following two mechanisms: first, the decrease in the gravitational mass of the central PNS through neutrino-signal emission and, second, the effect of hot nucleon bubbles, which are most likely formed in the PNS corona, on the envelope emersion. We show that the second mechanism is highly efficient in the range of acceptable masses of the nucleon bubbles (≤0.01M ) simulated in our hydrodynamic calculations in a rough, spherically symmetric approximation.  相似文献   

5.
We have investigated the role of group velocity in the calculation of pitch-angle diffusion coefficients by electron cyclotron harmonic (ECH) waves in planetary magnetospheres. The assumption which is generally made that the parallel group velocity can be neglected in comparison with particle parallel velocity is examined in detail. It is found that for lowest harmonic band this assumption is quite good. It is found that in general it is not possible to ignore the parallel group velocity. However, for lowest harmonic band this assumption is quite good at low electron temperatures.  相似文献   

6.
7.
A novel scheme of plasma simulation particularly suited for computing the one-dimensional nonlinear evolution of parallel propagating solar wind Alfvén waves is presented. The scheme is based on the Vlasov and the MHD models, for solving the longitudinal and the transverse components, respectively. As long as the nonlinearity is not very large (so that the longitudinal and transverse components are well separated), our Vlasov-MHD model can correctly describe evolution of finite amplitude parallel Alfvén waves, which are typical in the solar wind, both in the linear and nonlinear stages. The present model can be applied to discussions of phenomena where the parallel Alfvén waves play major roles, for example, the solar coronal heating and solar wind acceleration by the Alfvén waves propagating from the photosphere.  相似文献   

8.
9.
A large area (5×1010km2) of a coronal hole disappeared in concert with a transient brightening of a nearby high-latitude coronal arcade in the northern hemisphere on 15 May 1992. This coronal-hole disappearance took place in a time scale of half a day. It is suggested that the large-scale and quick change in coronal-hole geometry induced the eruption of originally closed coronal magnetic structure of the high-latitude arcade. An associated solar wind disturbance with the plasma speed of >700 km/sec was observed by IPS, and geomagnetic sudden commencement was reported on 18 May 1992.  相似文献   

10.
We have empirically estimated how often fireball shocks produce overpressure (∆P) at the ground sufficient to damage windows. Our study used a numerical entry model to estimate the energy deposition and shock production for a suite of 23 energetic fireballs reported by U.S. Government sensors over the last quarter century. For each of these events, we estimated the peak ∆P on the ground and the ground area above ∆P thresholds of 200 and 500 Pa where light and heavy window damage, respectively, are expected. Our results suggest that at the highest ∆P, it is the rare, large fireballs (such as the Chelyabinsk fireball) which dominate the long-term areal ground footprints for heavy window damage. The height at the fireball peak brightness and the fireball entry angle contribute to the variance in ground ∆P, with lower heights and shallower angles producing larger ground footprints and more potential damage. The effective threshold energy for fireballs to produce heavy window damage is ~5–10 kT; such fireballs occur globally once every 1–2 years. These largest annual bolide events, should they occur over a major urban center with large numbers of windows, can be expected to produce economically significant window damage. However, the mean frequency of heavy window damage (∆P above 500 Pa) from fireball shock waves occurring over urban areas is estimated to be approximately once every 5000 yr. Light window damage (∆P above 200 Pa) is expected every ~600 yr.  相似文献   

11.
We present the results of extensive thermal-infrared observations of the C-type near-Earth Asteroid (1580) Betulia obtained in June 2002 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Betulia is a highly unusual object for which earlier radiometric observations, interpreted on the basis of simple thermal models, indicated a surface of high thermal inertia. A high thermal inertia implies a lack of thermally insulating regolith. Radiometric observations of other asteroids of comparable size indicate that regolith is present in nearly all cases. Knowledge of the surface thermal properties of small near-Earth asteroids is crucial for meaningful calculations of the Yarkovsky effect, which is invoked to explain the delivery of collisional fragments from the main belt into near-Earth orbits, and apparently has a significant influence on the orbital evolution of potentially hazardous near-Earth asteroids. Furthermore, apart from being an indicator of the presence of thermally insulating regolith on the surface of an asteroid, the thermal inertia determines the magnitude of the diurnal temperature variation and is therefore of great importance in the design of instrumentation for lander missions to small asteroids. In the case of Betulia our database is sufficiently broad to allow the use of more sophisticated thermal models than were available for earlier radiometric observations. The measured fluxes have been fitted with thermal-model emission continua to determine the asteroid's size and geometric albedo, pv. Fits obtained with a new thermophysical model imply an effective diameter of 4.57±0.46 km and an albedo of 0.077±0.015 and indicate a moderate surface thermal inertia of around 180 J m−2 s−0.5 K−1. It is difficult to reconcile our results with earlier work, which indicate a larger diameter for Betulia and a high-thermal-inertia surface of bare rock.  相似文献   

12.
13.
The Seyfert 2 galaxy NGC 2273 is a prime target to explore how active nuclei can be fed. It has a star-forming innermost nuclear ring with a radius of 0.33kpc from where material may be funneled to the supermassive black hole in its center. In this article, we discuss high-resolution adaptive optics aided JHKs images of NGC 2273 taken with the Large Binocular Telescope. Using Galfit we decomposed the innermost part of NGC 2273 into a core, a disk, and a ring using 58 parameters, 44 of them were used to describe the ring. The stellar mass of the ring was found to be 12 × 1 0 8 M $$ \times 1{0}^8{\mathrm{M}}_{\odot } $$ , a factor of 10 higher than its molecular gas mass. A continuous gas flow via the main stellar bar of NGC 2273 during the lifetime of the bar of up to 10 M yr 1 $$ {\mathrm{M}}_{\odot }{\mathrm{yr}}^{-1} $$ is required to provide the fuel for the formation of the stars unless the star formation efficiency is on the order of 10%. This does not affect the fueling of the nuclear source as the amount of molecular gas required for this low-luminosity active galaxy to achieve this is on the order of 1 0 4 M $$ 1{0}^4{\mathrm{M}}_{\odot } $$ only.  相似文献   

14.
15.
Plasma and magnetic field measurements made onboard the Venus Express on June 1, 2006, are analyzed and compared with predictions of a global model. It is shown that in the orbit studied, the plasma and magnetic field observations obtained near the North Pole under solar minimum conditions were qualitatively and, in many cases also, quantitatively in agreement with the general picture obtained using a global numerical quasi-neutral hybrid model of the solar wind interaction (HYB-Venus). In instances where the orbit of Venus Express crossed a boundary referred to as the magnetic pileup boundary (MPB), field line tracing supports the suggestion that the MPB separates the region that is magnetically connected to the fluctuating magnetosheath field from a region that is magnetically connected to the induced magnetotail lobes.  相似文献   

16.
In recent years, all-sky camera airglow observations of evolving nighttime F-region structures have raised questions regarding the formation and apparent motion of these often wave-like structures. We address these issues using a pseudo-spectral method code developed to numerically solve the Perkins (1973. Spread F and ionospheric currents. J. Geophys. Res. 78, 218-226) moment equations modeling F-region electrodynamics. To aid in interpretation of the results, we utilize a Gaussian shape initial condition of the (geomagnetic field, B, parallel) integrated conductivity under the homogeneous TEC (B-parallel total electron content) condition and a northeastward DC electric field (E-field). We find that the initial Gaussian shape conductivity structure gradually evolves into banded structures oriented along the northwest-southeast direction while the amplitude of the banded structures continues growing and the peak of the structure moves to the northwest due to the E×B drift. The potential distribution corresponding to the initial Gaussian conductivity distribution is more complex but also becomes banded with the same orientation and growing trend as the conductivity. Wave vector domain plots show structure growth in approximately the first and third quadrants and damping in the second and fourth quadrants for both the conductivity and potential, as Perkins predicts—this leads to the orientation of the structures. We note that the evolved banded structures in conductivity and potential are oriented perpendicular to the direction given by half the angle between the DC E-field and east—the direction of maximum instability growth rate predicted by Perkins. The polarization (perturbation) E-field is seen mainly perpendicular to the long axis of the banded structures—i.e., no obvious structure-parallel E-field is observed in the simulation. By tracking the maximum point of the conductivity as a function of time, it is found that the localized structures move northwestward at a nearly constant speed that corresponds to the E×B drift velocity (to within relative errors on the direction and magnitude of ?4%). We also note that the E×B drift velocity has a dominant effect on the speed and propagation direction of the wave-like bands. The “wave” velocity is the projection of the E×B drift velocity on the line perpendicular to the wave front. Thus, the movement of a northwest-southeast oriented band can be decomposed into two components—parallel (to the band, northwestward) and perpendicular (southwestward) motions. A preliminary comparison of these results with an Arecibo all-sky camera observations shows good agreement.  相似文献   

17.
Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z = 3, when the universe was still in its ‘teen years’. I illustrate recent progress in this field with the latest observations of the gravitationally lensed galaxy MS 1512- cB58. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
Climate change may affect the sediment generation and transportation processes and the consequent sediment flux in a river. The sensitivity of suspended sediment flux to climate change in the Longchuanjiang catchment is investigated with Artificial Neural Networks (ANNs). ANNs were calibrated and validated using sediment flux data from 1960 to 1990 during which the influence from human activities was relatively stable. The established ANN is used to predict the responses of sediment flux to 25 hypothetical climate scenarios, which were generated by adjusting the baseline temperature up to − 1, 1, 2 and 3 °C and by scaling the baseline precipitation by +/ 10% and +/ 20%. The results indicated when temperature remains unchanged, an increase in rainfall will lead to a rise in sediment flux; when rainfall level remains unchanged, an increase in temperature is likely to result in a decrease in sediment flux. Same percentage of changes in rainfall and temperature are likely to trigger higher responses in wetter months than in drier months. However, it is the combination of the change in temperature and rainfall that determines the change of sediment flux in a river. Higher sediment flux is expected to appear under wetter and warmer climate, when higher transport capacity is accompanied by higher erosion rate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号