共查询到19条相似文献,搜索用时 78 毫秒
2.
赣南是我国钨矿床最密集的地区,尤以石英脉型钨矿最为发育.本文通过分析近年来该区石英脉型钨矿流体包裹体类型、流体包裹体特征、显微测温、激光拉曼光谱等方面的最新成果,结合碳、氢、氧及锶同位素的研究成果,探讨赣南石英脉型钨矿的流体特征,重点探讨石英脉型钨矿形成过程中的流体演化.认为赣南石英脉型钨矿成矿流体主要来源于岩浆水,流体演化始于高温高盐度的岩浆—热液过渡阶段,与黑钨矿沉淀密切相关的流体温度主要集中于260~360℃,盐度主要集中于4~9 wt% NaCl eq.,属中—低盐度、富含SiO2、挥发组分及多种成矿元素的热液体系;矿质主要以流体沸腾和混合作用为主,自然冷却仅为少数矿床的主要矿石沉淀机制. 相似文献
3.
采用"流体包裹体组合"(FIA)的方法,在详细的岩相学观察的基础上,对盘古山钨矿床主要矿化阶段中早阶段的辉铋矿-黑钨矿-石英脉和晚阶段的(辉铋矿)-黑钨矿-石英脉石英中的流体包裹体进行了显微测温和拉曼探针的分析。该矿床主要矿化阶段含矿石英脉中包裹体主要包括H2O-NaCl型包裹体、H2O-NaCl-CO2型包裹体和少量的CO2型包裹体,富含CO2组分是盘古山钨矿成矿流体的明显特征。实验结果表明,矿床中主要矿化阶段石英脉中两相的H2O-NaCl型包裹体与H2O-NaCl-CO2型包裹体主要均一温度范围较为一致而前者盐度相对较高。辉铋矿-黑钨矿-石英脉中的H2O-NaCl型包裹体的均一温度明显高于(辉铋矿)-黑钨矿-石英脉中的H2O-NaCl型包裹体,但两者的盐度相差不大,从辉铋矿-黑钨矿-石英脉到(辉铋矿)-黑钨矿-石英脉,H2O-NaCl-CO2型包裹体数量减少,CO2型包裹体数量增多。对各类包裹体的激光拉曼探针测试表明,辉铋矿-黑钨矿-石英脉中和(辉铋矿)-黑钨矿-石英脉中的包裹体的组分相近,除水和CO2外,还含有少量的CH4和N2。盘古山钨矿的流体包裹体特征表明,以CO2逸失为特征的流体不混溶作用是矿床金属沉淀的主要机制。 相似文献
4.
石英脉型金矿是常见的金矿床类型.金主要以粒间金、裂隙金和包裹金3种形式赋存于石英、黄铁矿等金属硫化物中.目前了解此类金矿的成矿流体组成主要是通过石英中的流体包裹体成分的定量和定性分析结果,揭示矿床成因.但是野外和室内镜下的综合研究已证实,金矿的形成经历了若干个成矿阶段.每个阶段都有石英和金属硫化物形成,而石英要明显早于金属硫化物的结晶,同时金在硫化物中的存在形式多为包裹金和裂隙金,这至少说明金和硫化物同时结晶沉淀或金比硫化物更晚沉淀.因此,金运移沉淀结晶时的流体和石英结晶时的流体存在着明显的时间差,金矿化与黄铁矿等金属硫化物有着密切的联系.研究金属硫化物中的流体包裹体来反映主成矿阶段的成矿流体物质来源,比研究石英中的流体包裹体更具有实际的意义. 相似文献
5.
石英脉型与矽卡岩型是最重要的两类钨矿床,其成矿作用过程与成矿机制不同。矽卡岩型钨矿成矿作用经历了大规模隐爆过程,沟通了岩浆系统与地下水系统,体系中有大量大气降水的参与,成矿物质主要来自岩浆岩,岩浆热液体系与地下水体系的混合是大规模成矿的重要机制。石英脉型钨矿则不然,虽然发育大规模的控矿断裂体系,但成矿分带不明显,甚至发生逆向分带,大部分钨矿顶部以线脉带尖灭于砂岩中,矿床外围也不出现独立的铅锌矿体;一般划分不出明显的多成矿阶段,也不发育隐爆角砾岩;成矿流体温度、盐度变化范围小,无明显的沸腾流体包裹体组合,成矿流体的混合或降温演化过程皆不明显;成矿物质及流体都来自岩浆岩,成矿过程中无显著的外来成矿物质和/或大气降水的参与。与矽卡岩矿床相比,石英脉型钨矿成矿系统总体表现为相对的“封闭”性。石英脉两侧的云英岩化蚀变规模较小,石英的δ18O及流体包裹体δD变化很小,成矿体系的水/岩比例较低。形成黑钨矿石英脉的成矿流体可能并非简单的岩浆期后热液,而是一类含水相对低富含硅质和成矿物质的高温流体,通过快速充填形成矿床。 相似文献
7.
南岭东段以石英脉型钨矿集中产出而闻名于世,岩前钨矿是该地区新近发现的中型矽卡岩型钨矿。本文在详细矿床地质和成矿期次研究基础上,对矽卡岩型矿体各成矿阶段的代表性矿物石榴子石、白钨矿、石英、方解石及矽卡岩附近白钨矿 黑钨矿石英脉中石英的流体包裹体进行了系统的岩相学、显微测温、激光拉曼光谱分析和氢氧同位素地球化学研究。岩前钨矿流体包裹体类型主要为富液相两相水溶液I型包裹体和含CO2三相水溶液Ⅳ型包裹体,石榴子石和石英中I型包裹体中偶见子晶。白钨矿 黑钨矿石英脉中的石英相比矽卡岩型矿体中的石英具有更多的Ⅳ型包裹体。早期矽卡岩阶段的流体参数为温度300~510℃、压力32~108 MPa、平均盐度7.64%、平均密度0.69g/cm3,白钨矿主成矿阶段(晚期矽卡岩阶段)的流体参数为温度230~300℃、压力21~64 MPa、平均盐度6.99%、平均密度0.87g/cm3,石英 硫化物 碳酸盐阶段的流体参数为温度100~230℃、压力10~62 MPa、平均盐度5.81%、平均密度0.95g/cm3。白钨矿 黑钨矿石英脉的形成温度集中于110~320℃,其上限高于矽卡岩型白钨矿的温度上限,推断石英脉型黑钨矿形成温度更高。岩前钨矿成矿流体在从高温至低温的演化过程中,盐度逐渐降低、密度逐渐增大、压力逐渐降低,整体为低盐度、低密度的流体。氢氧同位素分析表明,成矿流体来源主要为岩浆水,晚期有少量大气水的加入。岩前钨矿成矿机制主要包括流体不混溶作用、流体与围岩相互反应、流体自然冷却、流体混合和压力下降,其中以CO2逸失为特征的流体不混溶作用为重要的成矿机制。岩相学观察、显微测温、激光拉曼光谱分析证实了矽卡岩型矿体及白钨矿 黑钨矿石英脉中石英的包裹体中都含有CO2。I型包裹体与Ⅳ型包裹体共存、高盐度包裹体与低盐度包裹体共存及部分I型包裹体中含子晶证明岩前钨矿成矿过程中存在流体不混溶作用。成矿过程为:成矿初期,岩浆上侵分异出富钨岩浆热液,热液与碳酸盐质围岩发生了剧烈的接触交代作用,引起了围岩中Ca2+的释放以及pH和氧逸度的升高,同时发生了大规模隐爆作用并导致了CO2流体不混溶作用。CO2参与形成了可作为W运移载体的碱金属水溶液,另外其逸失导致pH升高和氧逸度降低。成矿初期的含矿热液为高温、高压、高盐度、富钨、富钙、富挥发份、pH相对较高、偏还原之后偏氧化的流体,在温压下降及氧逸度降低的条件下白钨矿大量沉淀。白钨矿 黑钨矿石英脉由于靠近矽卡岩,所以热液中含Ca2+,但Ca2+的含量还不足以形成单一的白钨矿,所以出现了白钨矿和黑钨矿共存。对岩前钨矿成矿流体的研究进一步厘定了该区矽卡岩型钨矿的成因机制,同时有益于拓展南岭东段钨矿的找矿方向。 相似文献
8.
小加山钨矿床位于新疆巴里坤地区,属石英脉型钨矿床。矿体赋存于邻近海西晚期花岗岩侵入体附近的中泥盆统大南湖组第一亚组第二段(D2d12)的变晶屑凝灰岩中。黑钨矿石英脉分为灰色含钨石英脉和白色含钨石英脉两种。岩相学观察认为,含矿石英脉中流体包裹体主要为两相水溶液包裹体, EW 走向的灰色石英脉包裹体气液比大, SN 走向的白色石英脉包裹体气液比较小。显微测温结果显示灰色石英脉均一温度(Th)范围为143~354℃,白色石英脉 Th 范围为154~312℃。激光拉曼探针显示小加山钨矿床含黑钨矿石英脉中流体包裹体含有少量 CO2组分。H、O 同位素研究表明:钨矿床成矿流体来源以岩浆水为主。成矿演化过程为:岩浆岩侵入活动→岩浆水运移分离→含钨络合物迁移搬运→冷却富集成矿,成矿晚期流体有大气降水的混合。与赣南钨矿的对比研究表明,小加山钨矿床与赣南钨矿床的成矿流体特征相似;在构造环境上,小加山钨矿床位于东准噶尔造山带和东天山成矿带的交汇复合部位,与位于武夷山和南岭两大成矿带的交汇复合部位的赣南钨矿床成矿环境相似。 相似文献
9.
达亚纳钨钼矿床是近年来内蒙古东乌旗-嫩江成矿带西南端的一个中小型石英脉型钨钼矿床。通过对主成矿阶段石英脉中的流体包裹体进行了显微测温研究表明,其流体包裹体主要类型有NaCl-H_2O型、CO_2-H_2O型和含子晶包裹体;显微测温实验结果表明成矿流体主要表现为中-高温,中-低盐度特征。对流体包裹体的分析发现成矿具有多期次,脉动式热液充填成矿特点,可将成矿热液划分为五期热液活动,前三期为成矿期热液活动,后两期为成矿后热液活动。达亚纳钨钼矿成矿机制为流体混合沉淀成矿。 相似文献
10.
从江西西北部至安徽南部发育一条显著的斑岩-矽卡岩型钨成矿带,香炉山是其中一典型的矽卡岩钨矿床。矿床具有明显的矿化分带特征,由近接触带矽卡岩和云英岩矿体和远接触带脉状石英-硫化物-白钨矿和透镜状矿体组成。通过对不同蚀变带上矿石矿物和脉石矿物的流体包裹体显微测温分析表明:矽卡岩中的流体包裹体的均一温度范围在209~383℃,脉状石英-白钨矿和石英-硫化物-白钨矿中流体包裹体的均一温度范围分别为163~278℃和204~284℃,晚期方解石脉的温度最低为143~235℃;矽卡岩中的流体包裹体的盐度范围在0.35%~5.26%NaCleqv,脉状石英-白钨矿和石英-硫化物-白钨矿中流体包裹体的盐度范围分别为0.35%~5.86%NaCleqv和0.70%~9.21%NaCleqv,晚期方解石脉的盐度为0.35%~2.07%NaCleqv。激光拉曼探针测试表明,矽卡岩、石英-白钨矿脉和石英-硫化物-白钨矿脉中流体包裹体组分主要为H2O,还含有一定量CH4和少量的N2。从早期到晚期成矿阶段表现为一个降温的过程,指明了钨成矿温度较宽泛;钨在流体中可能以钨酸的形式运移,与围岩反应时,温度降低和碱性升高,促使白钨矿沉淀成矿。早期到晚期成矿流体温度和物质组成发生变化是成矿发生分带的重要原因。 相似文献
11.
邢家山矿床是胶东地区发现的大型矽卡岩型钼多金属矿床。通过野外调研,将成矿过程划分为四个阶段:早矽卡岩阶段、晚矽卡岩阶段、石英硫化物阶段和石英-碳酸盐阶段。对不同阶段流体包裹体研究表明,存在液体包裹体(L)、气体包裹体(V)和含子矿物包裹体(S)三类。激光拉曼探针显示流体的气体分类型为H_2O-H_2S,早和晚矽卡岩阶段均一温度集中在375~450℃,盐度存在14%~15%NaCleqv和大于30%NaCleqv两个端元;石英-硫化物阶段均一温度集中在260~340℃,盐度存在8%~12%NaCleqv和大于50%NaCleqv两个端元;石英-碳酸盐阶段流体包裹体均一温度集中在170~200℃,盐度小于10%NaCleqv。该矿床成矿流体具有高温高盐度的特征,且富含H_2S等还原性气体,从矽卡岩阶段到碳酸盐阶段成矿温度和盐度总体有降低的趋势。邢家山钼矿δ~(18) O_(H_2O)值为0.04‰~8.18‰,δ~(13) C_(V-PDB)值为-3. 35‰~-0.73‰,δ~(18) O_(V-SMOW)值为5. 93‰~8. 42‰,δ~(34)S值为6.5~10. 8‰。邢家山矿床成矿流体主要来源于岩浆,后期有大气降水的加入,流体沸腾是成矿的主要机制。 相似文献
12.
湖南瑶岗仙超大型钨矿床位于南岭成矿带中段,主要由石英脉型黑钨矿矿脉和矽卡岩型白钨矿矿体组成。前人对瑶岗仙石英脉型黑钨矿矿体开展了较为详细研究,但对矽卡岩型白钨矿的研究则相对较少,有关其矿体特征、成矿过程及其与石英脉型矿化的成因联系尚不清楚。本文在矿床地质研究基础上,将瑶岗仙矽卡岩型钨矿床分为早期石榴子石-透辉石-白钨矿阶段(Ⅰ)和晚期碳酸盐-硫化物-白钨矿阶段(Ⅱ),并重点针对两个阶段的白钨矿开展了矿物学、元素地球化学、成矿流体地球化学研究,进而厘定了矽卡岩型白钨矿的成矿过程。结果显示,Ⅰ阶段白钨矿的Mo含量(1648×10-6~3310×10-6)明显高于Ⅱ阶段白钨矿的Mo含量(816×10-6~1725×10-6),且Ⅰ阶段白钨矿的稀土配分具明显的MREE和HREE亏损特征,指示早期矽卡岩阶段成矿流体具有相对高的氧化条件。两阶段的流体包裹体具有相似的δ18O值(7.7‰~9.8‰和7.4‰~8.9‰)和δD值(-53‰~-60‰),表明成矿流体均主要来源于花岗质岩浆,而大气降水与岩浆流体的混合程度低于其他矽卡岩型钨矿床。白钨矿中的流体包裹体具有富CO2和CH4的特征,指示该成矿流体体系易于发生流体不混溶作用。白钨矿Ⅰ的成矿流体均一温度为229.1~377.3℃,盐度为1.8%~14.7% NaCleqv,白钨矿Ⅱ的成矿流体均一温度为187.4~294.5℃,盐度为1.2%~10.2% NaCleqv,指示成矿流体演化过程中流体温度和盐度逐渐降低。由此可见,瑶岗仙矽卡岩型矿床的成矿流体起源于花岗质岩浆,与石英脉型黑钨矿同源,总体上经历了两阶段钨矿的叠加成矿作用,流体不混溶作用对钨的聚集至关重要,在早期矽卡岩阶段形成了呈条带状的白钨矿矿体,在晚期矽卡岩退化蚀变阶段形成了被碳酸盐交代的白钨矿矿体。 相似文献
13.
石英脉型钨矿床是中国数量最多的钨矿床类型,但保有储量消耗迅速,迫切需要创新找矿模型,指导找矿突破。文章结合二十余年的找矿实践,通过详细分析扇状成矿矿床实例,构建了石英脉型钨矿床新的找矿模型。该模型强调赋矿裂隙为岩浆动力成因,在花岗岩体顶部呈扇状分布型式,岩浆期后热液恰在裂隙张开时充填其中而形成扇状成矿系统;提出“就岩找矿”、“就矿找矿”、“就矿找岩”的地质、地球化学和地球物理标志,指导矿床尺度的勘查工程部署。截至目前,该模型已在广东禾尚田钨锡矿床、广西珊瑚钨锡矿床、广西社垌钨钼矿床、江西盘古山钨铋矿床等获得了验证,找矿成效显著。 相似文献
14.
湖南杮竹园是世界著名的大型矽卡岩型锡钨多金属矿床,产于千里山碱长花岗岩岩体南部接触带。矽卡岩中广泛发育网脉状碱交代脉和少量花岗岩脉、云英岩脉等各类脉体。碱交代脉主体由钾长石、萤石、少量石英、磁铁矿、黑钨矿、白钨矿及花岗岩构成,以往被统称为"云英岩脉"。其中早阶段碱交代脉中央发育花岗岩,边部为钾长石-萤石-黑钨矿,脉体两侧发育石榴子石透辉石矽卡岩化,对应矽卡岩阶段。晚阶段碱交代脉主要成分为钾长石、萤石,脉体及两侧出现大量阳起石、绿帘石、磁铁矿、白钨矿及辉钼矿、辉铋矿、自然铋等,对应退变质氧化物阶段。空间上,碱交代脉分布于矽卡岩和矽卡岩化大理岩中,不进入岩体。自花岗岩体→岩脉→碱交代脉→矽卡岩,Ca O、Ti O2、成矿元素W、Bi、Mo、Cu、Pb、Zn以及Sr、Ba等元素含量增高,显示出成矿元素向热液中富集,且岩浆和矽卡岩受到碳酸盐岩围岩的影响。碱交代脉的组构显示出其形成于富含成矿物质和挥发份流体的岩浆,其中广泛发育熔融包裹体和熔流包裹体,显示其浆液过渡态流体的成因性质。从岩浆晚期分异演化→热液阶段是连续演化的过程,块状云英岩和矽卡岩阶段,岩浆并未完全固结,成矿作用自岩浆固结之前已经开始。总结了杮竹园矿床成矿模型:碱长花岗岩岩浆演化晚期分异出的高度富含挥发份的熔浆,在岩体顶部聚集,部分形成似伟晶岩(壳)和块状云英岩以及条带状硅灰石符山石矽卡岩。进一步聚集以及矽卡岩化产生大量CO2引起大规模隐爆,富含挥发份的岩浆或浆液过渡态流体沿隐爆形成的碎裂裂隙进入碳酸盐岩围岩,与碳酸盐岩不断发生反应,在脉体边部形成钾长石化以及大范围的石榴子石透辉石矽卡岩化。至退变质氧化物阶段,随着岩浆冷凝和温度、压力的降低,地下水大范围参与,成矿流体逐渐转变为热液性质,形成大量阳起石、磁铁矿、白钨矿及钼、铋硫化物。硫化物阶段,大量的大气降水参与成矿,温度、盐度进一步降低,在矽卡岩及其外侧的碳酸盐岩中形成铅锌硫化物矿石。 相似文献
15.
近年来赣北-皖南地区陆续发现了一批斑岩-矽卡岩钨矿床,构成一个新的世界级钨成矿带——江南钨矿带。位于该成矿带东北段的皖南地区发育大量与弱分异氧化性花岗岩相关的钨多金属矿床,目前这类矿床缺乏基于矿物原位地球化学的精细研究,成矿流体性质和演化认识不清。本文选取皖南地区两个代表性钨多金属矿床——竹溪岭和逍遥矿床为研究对象,开展白钨矿原位成分分析,揭示矽卡岩体系成矿流体性质、物化条件变化以及水岩反应影响,并探讨江南钨矿带内钨成矿条件差异。白钨矿原位成分分析能够精细厘定矽卡岩形成过程的氧逸度、pH值、温度、成矿流体组成变化以及水岩反应等信息。逍遥矿床和竹溪岭矿床的白钨矿均可分为三个阶段:其中早期进变质矽卡岩中白钨矿(Sch-1)的Mo含量最高,REE表现为轻重稀土分异的右倾曲线,具有负Eu异常,与成矿母岩REE配分类似,指示早期流体是相对富Cl的岩浆出溶热液;Sch-2产于退变质矽卡岩阶段,其轻重稀土分异变弱,有一定的正Eu异常,REE和Mo含量较低,推测早期Sch-1结晶摄取大量的LREE,导致后期流体轻重稀土比值降低;脉状产出的白钨矿(Sch-3)形成于晚期石英-硫化物阶段,其REE、Nb、Ta和Y等元素含量显著高于Sch-1和Sch-2,REE表现为轻重稀土分异弱的平坦型曲线,发育弱正Eu异常,暗示晚期流体更加富F。本文研究认为从早期Sch-1到晚期Sch-3,白钨矿Eu异常变化不一定反映氧逸度变化,而更可能反映的是水岩反应制约;此外,白钨矿的Mo含量相对于Eu异常更能够有效地反映体系的氧逸度特征。与逍遥矿床相比,竹溪岭矿床石榴石的钙铁榴石组分含量较低,锰铝榴石组分含量高,白钨矿Mo含量(630×10-6~18813×10-6)显著低于逍遥白钨矿(8700×10-6~74478×10-6),指示竹溪岭矿床相比于逍遥矿床是相对还原的钨矽卡岩体系。前人认为江南钨矿带中相对于赣北还原型钨矽卡岩矿床,皖南地区矿床总体上属于氧化型,基于竹溪岭矿床和逍遥矿床的对比表明皖南地区钨矿床之间氧化还原状态存在差异。氧逸度和成矿岩浆岩的分异程度是制约皖南地区矿床规模大小的重要因素。 相似文献
16.
新疆西北部的托库孜巴依(巴依)金矿床位于西伯利亚古板块南缘,阿尔泰陆缘活动带克兰弧后盆地与哈巴河弧间盆地接壤处。本次研究在前人成果基础上,通过详细的野外调查、室内显微观察、流体包裹体测温、激光拉曼成分分析和氢-氧同位素分析等多种方法,揭示了巴依金矿各成矿阶段流体特征、成矿热液来源和流体演化过程。根据野外矿脉空间分布、穿插关系、矿物组合及结构构造等特征,结合流体包裹体研究,本文将巴依金矿的成矿作用划分为4个阶段:石英-磁铁矿阶段(Ⅰ),主要发育富液相包裹体,均一温度范围在3529~4134℃区间,盐度范围为73%~147%NaCleqv,平均为104%NaCleqv;石英-黄铁矿阶段(Ⅱ),该阶段主要发育富液相包裹体、富气相包裹体以及含子晶包裹体,均一温度范围为1860~3398℃,盐度变化范围为27%~443%NaCleqv,平均为92%NaCleqv;石英-黄铁矿-黄铜矿阶段(Ⅲ)主要发育富液相包裹体和含(富)CO_2三相水溶液包裹体,均一温度范围为1410~1864℃(富液相包裹体),盐度范围较大,介于0~88%NaCleqv之间;石英-方解石阶段(Ⅳ),流体包裹体以富液相为主,均一温度范围1020~1400℃,盐度范围为02%~43%NaCleqv。该矿床从成矿早阶段到成矿晚阶段温度-盐度整体呈下降趋势,在主要成矿阶段(Ⅱ、Ⅲ)出现流体沸腾现象。各成矿阶段δ~(18)O、δD同位素变化范围分别为:成矿早阶段(Ⅰ)531‰和-8510‰;主要成矿阶段(Ⅱ、Ⅲ)-153‰~150‰和-974‰~-811‰;成矿晚阶段(Ⅳ)-352‰~-342‰和-939‰~-871‰,成矿流体主要是早阶段的变质水与中晚阶段加入的大气水混合而成。巴依金矿成矿流体表现为一套中低盐度NaCl-H_2O-CO_2流体体系,符合造山型金矿成矿流体特征。综合矿床地质研究,本文认为在晚石炭世-二叠纪喀拉通克岛弧与西伯利亚板块碰撞造山构造体制下,流体混合、压力降低和沸腾作用是巴依金矿床富集成矿的主要机制。 相似文献
17.
对黑龙江省三矿沟矽卡岩型铁铜矿床内花岗闪长岩中石英斑晶、硫化物阶段及石英-碳酸盐阶段的石英、方解石中流体包裹体的岩相学、显微测温学和显微激光拉曼光谱分析等的研究结果表明,流体包裹体有富液相、富气相和含子矿物多相包裹体3种类型;花岗闪长岩石英斑晶中的含子矿物多相包裹体均一温度均值为4320C,盐度在30.92 wt%~63.91 wt%NaCl eqv.之间,平均为52.96 wt%NaCl eqv.,代表了高温、高盐度岩浆流体;硫化物阶段形成的黄铜矿磁铁矿矿石中流体温度主要介于323~424℃之间,盐度介于8.95 wt%~62.51 wt%NaCl eqv.之间;硫化物阶段形成的黄铜矿矿石中流体温度主要介于333~441℃之间,盐度介于8.28 wt%~65.32 wt%NaCl eqv.之间;石英-碳酸盐阶段流体温度主要介于124~140℃之间,盐度介于1.65 wt%~4.34 wt%NaCl eqv.之间.铁铜矿石均形成于高温、高盐度阶段,以岩浆热液为主,在成矿晚期,由于大气降水的混合,形成了少量低温、低盐度流体,成矿流体以富Na、K、Ca、Cl-和CO~2_3-的高盐度流体为特征,主体属于NaCl-H_2O-CO_2-H_2S-CH_4体系.成矿流体在300~400℃区间内发生了强烈的沸腾作用,导致大量金属硫化物和少量金属氧化物沉淀,沸腾作用对三矿沟铁铜矿床的形成起到至关重要的作用. 相似文献
18.
豫西沙沟薄脉状Ag-Pb-Zn硫化物矿床位于华北陆块南缘熊耳山地区,主要由多金属硫化物-石英-碳酸盐脉型和石英-碳酸盐-绢云母-多金属硫化物蚀变岩型两种矿化类型组成。主要矿脉的矿物共生序列可以分为成矿前的石英-黄铁矿阶段(Ⅰ)、闪锌矿-石英-方铅矿-少量银矿物阶段(Ⅱ1)、方铅矿-石英-闪锌矿-含铁白云石-银矿物阶段(Ⅱ2)和成矿后的方解石-(石英)阶段(Ⅲ)。对不同阶段的成矿流体研究表明,石英-黄铁矿阶段(Ⅰ)中的含氯化钠子晶三相(LVH)包裹体(Ⅰ1)可能是直接从饱和水的结晶岩浆熔体中出溶形成或是由岩浆流体的减压沸腾形成,显示该区很可能存在岩浆流体端元。多金属硫化物阶段(Ⅱ1Ⅱ2)捕获富液相包裹体(LV型)和个别CO2包裹体(C型),这两个阶段流体包裹体反映了主成矿阶段流体的基本特征,结合包裹体气相和液相成分色谱分析以及包裹体初融温度,认为成矿流体应该为中-低温低盐度含CO2的H2O-NaCl体系。其中,阶段(Ⅱ2)的均一温度(145~288℃,平均为194℃)比阶段(Ⅱ1)的均一温度(185~357℃,平均240℃)低46℃;同时,阶段(Ⅱ2)的盐度(1.91%~10.86%,平均6.38%)较阶段(Ⅱ1)盐度(4.65%~10.11%,平均7.77%)略低。对这一温度和盐度的总体下降趋势的合理解释是大气水的逐渐混入。多金属硫化物阶段(Ⅱ1Ⅱ2)之后的方解石-(石英)阶段普遍为富液相包裹体(LV型),该阶段显著降低的温度(129~208℃,平均165℃)和盐度(1.40%~4.03%,平均2.50%),进一步佐证大气水的不断混入。而且,流体混合可能在引起矿石矿物从热液中沉淀方面起到重要作用。 相似文献
19.
黑龙江鹿鸣钼矿床位于小兴安岭-张广才岭多金属成矿带内,赋存于二长花岗岩体内。根据矿石组构、蚀变类型和脉体穿插关系,将鹿鸣钼矿床自早到晚划分为3个成矿阶段:1)钾硅化浸染状矿化阶段;2)硅化网脉状矿化阶段;3)绿泥石-碳酸盐化阶段。鹿鸣钼矿床包裹体类型复杂,盐水溶液包裹体、富气相包裹体、含CH4(CO2)包裹体和含子晶多相包裹体共存,其中盐水溶液包裹体均一温度集中于133~425℃,盐度为1.6%~16.1%Na Cleqv。富气相包裹体均一温度集中在243~500℃,盐度为1.2%~14.1%NaC leqv。含子晶多相包裹体最终均一温度为297~449℃,盐度为38.2%~53.1%NaC leqv。含CH4(CO2)包裹体经激光拉曼光谱分析证实其中以CH4为主,少数含微量的CO2,均一温度为334~437℃。硫同位素测试结果显示:δ34S变化范围在4.5‰~5.7‰,成矿流体中的硫主要来源于岩浆热液。氢、氧同位素分析数据投到δD-δ18OH2O图解中,投影点落在岩浆水附近并向大气降水飘移,可以推断主成矿期的成矿介质水为岩浆水并混有少量的大气降水。鹿鸣钼矿床主成矿期压力估算为30~90MPa,推测成矿深度为3~9km。成矿流体演化过程可能为岩浆房最先分离出一个单一相的高温、中等盐度的H2O-NaC l-CH4(CO2)超临界流体,后由于减压和不同流体的混入导致流体沸腾发生不混溶并捕获形成多种类型包裹体。随着成矿流体不断演化,成矿温度逐步降低,金属矿物也不断沉淀成矿。通过对鹿鸣钼矿床中流体包裹体的研究可知,与成矿有关的流体不是单一的岩浆分异的结果,也有大规模其他流体的混入,矿区复杂的地质构造环境也为钼成矿提供了条件。 相似文献
|