首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
盆地模拟水动力油气二次运移隐式多重网格法   总被引:6,自引:2,他引:4       下载免费PDF全文
本文提出一种高效率求解油气二次运移的方法,以水动力为油气运移模型,采用多重网格加速方法.典型油气二次运移的计算表明:该多重网格加速方法极大地提高了求解油气二次运移的偏微分方程速度,其计算工作量为O(N)(N为网格节点数),解的收敛速度与网格尺度无关,当网格密度增加时,仍能保证偏微分方程解的稳定性.本文在数值模拟之后,对东营凹陷的实际资料进行了处理,其计算结果表明本文提出的多重网格方法对油气运移的计算有良好的实用意义.  相似文献   

2.
为加快直流电阻率法三维正演模拟的计算速度,本文引入一种新型的代数多重网格算法一聚集代数多重网格算法(AGMG)。首先从直流电阻率法满足的电位二次场微分方程出发,采用七点有限差分格式进行离散,结合混合边界条件形成大型稀疏求解线性方程组;然后详细给出AGMG法聚集粗化的成对聚集算法及技术流程,并采用V循环AGMG预处理共轭梯度(CG)算法(AGMG-CG)求解线性方程组,最终实现直流电阻率三维正演模拟。通过典型地电模型数值模拟研究,并与成熟的直流电阻率三维正演模拟程序(3DDCXH)结果及解析结果对比验证了本文给出算法可行性和准确性。另外通过对不同剖分网格和不同模型的数值模拟,并与传统迭代算法(ILU-BCGSTAB、ILU-GCR、SSOR-CG)对比表明,AGMG-CG算法不论从迭代次数还是迭代时间上都有显著优势,同时具有近乎线性快速下降、迭代次数随网格大小增加而缓慢增加等优点。因此,本文算法具有收敛精度高、收敛快、迭代稳定等优点,为提高直流电阻率法三维正演模拟的计算效率提供了可能。  相似文献   

3.
为提高大地电磁正演计算速度,开展了基于多重网格有限元法的大地电磁二维正演模拟计算研究.将稳定双共轭梯度算法作为多重网格法的细网格松弛迭代算法,插值算子采用完全加权算子,限制算子设计基于网格单元面积率,使多重网格法更适于求解大型复系数方程组.二维均匀半空间模型、低阻体模型和高阻体模型的大地电磁正演模拟结果表明:当计算量较小时(网格剖分数量少),多重网格法在计算效率方面并未有优势,网格剖分数量较大时,多重网格有限元算法在收敛速度方面的优势明显,多重网格有限元法的大地电磁正演精度优于一般数值算法.这为三维多重网格有限元的大地电磁正演研究奠定了基础.  相似文献   

4.
面对越来越多的观测数据、越来越复杂的地电模型,大地电磁法的高维正反演需要发展高效、稳定的正、反演计算新技术。多重网格法是求解椭圆型偏微分方程最优化的方法之一,近些年来被广泛地用作大规模、高精度方程求解的加速器。目前,多重网格法多基于矩形网格来构造粗细不同的层次网格组,但是矩形网格不能适应几何形状复杂的区域并且不支持局部加密细化从而限制了多重网格法的应用。文中提出一种采用Delaunay三角网的非结构化多重网格生成算法,该算法能够自动对复杂区域生成粗细不同的网格,并且每层网格单元具有良好的形状比和可控的尺寸大小。文中采用该算法实现了对复杂地电模型的非结构多重网格的自动生成,解决了大地电磁多重网格正反演计算中复杂模型离散化这一关键的技术问题。  相似文献   

5.
将各向异性介质分成各向同性背景介质和各向异性异常介质,并提出一种空间-波数混合域方法实现了各向异性介质下直流电阻率法的三维数值模拟.不同于传统直流电阻率数值模拟方法,本文算法直接对空间域异常电位满足的偏微分方程沿水平方向进行二维傅里叶变换,使水平方向转换成波数域,保留垂直方向为空间域,可根据地下介质电流密度变化的快慢灵活剖分.这样可把空间域异常电位满足的三维偏微分方程转化成不同波数满足的一维常微分方程,把一个大规模三维数值模拟问题分解为多个一维数值模拟问题,利用一维有限单元法求解方程组,并通过采用压缩算子迭代计算,最终获得较为精确的数值解.与自适应有限单元法对比验证了本文算法的正确性;测试了算法的收敛性,结果表明在满足精度要求的情况下,算法的收敛性只与异常体和围岩之间的电导率差异相关,而与异常体大小和埋深无关;分析了算法计算效率,结果表明算法的计算效率与剖分网格节点成线性关系,算法可在微型计算机中较快计算出剖分节点总数超过千万的各向异性模型的结果;设计简单观测系统并验证其具有反映地下各向异性结构特性的能力;最后模拟异常体沿着不同方向旋转不同角度时的响应特征,对比分析可知异常体为各向异性...  相似文献   

6.
在三维频率域电磁法的正演模拟方法中,有限元方法具有计算精度高、适应性强的优点,近年来来得到了越来越多的关注.在正演过程中,主要的计算量集中在求解由偏微分方程组离散得到的线性方程组上,因此求解线性方程组关系着正演计算速度以及模拟精度.由于由有限元方法离散得到的复系数线性方程组条件数非常大,使用常规的迭代法和预条件很难收敛.目前大多数的研究工作采用直接解法,需要大量的计算机内存,限制了可求解问题的规模.本文研究了线性方程组的迭代解法,通过将复系数线性方程组转化为其实对称形式,构造分块对角预条件.在应用预条件的过程中,需要求解两个较小的实数方程,通过辅助空间解法求解.本文的算法适用于可控源电磁法和大地电磁法,对一系列的数值算例的模拟结果证明了迭代算法的效率,结果表明迭代算法可以在小于20次迭代内收敛,同时迭代次数与模型电阻率、问题规模和频率无关.  相似文献   

7.
对三维电阻率反演问题进行了深入研究,提供了一种利用地表观测数据实现三维反演的实用算法.该方法应用有限差分求正演解,并通过对粗糙度矩阵元素进行适当改进,使之适用于各种情况下粗糙度矩阵的求取,进而建立在模型的总粗糙度极小条件下的反演方程.对反演方程采用收敛速度快且稳定的最小二乘正交分解(LSQR)法进行迭代求解,在迭代求解过程中只需利用偏导数矩阵和其转置矩阵乘以一个向量的结果,回避了直接求偏导数矩阵的繁琐计算,节省了内存,加快了反演的计算速度.不同的计算实例表明上述方法是求解大规模三维电阻率反演问题的有效方法.  相似文献   

8.
直流电阻率法2.5维正演的外推瀑布式多重网格法   总被引:6,自引:1,他引:5       下载免费PDF全文
引入外推瀑布式多重网格法(EXCMG)求解2.5维直流电阻率有限元计算形成的大型稀疏线性方程组,结合基于地址矩阵的压缩存贮方式以及最优化离散波数,使得2.5维电阻率正演程序的计算速度大大提高而内存需求大大减小.研究结果表明:EXCMG法的收敛速度与网格尺寸无关,计算速度明显优于不完全Cholesky共轭梯度(ICCG)...  相似文献   

9.
三维频率域随钻电磁波测井数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
在现有的普通计算机的内存和运算速度的条件下,三维频率域电磁波测井数值模拟非常困难,为了研究随钻仪器在复杂测井环境中的响应规律,从Maxwell电磁响应方程出发,针对大斜度井井眼和侵入剖面的几何特点,采用新的网格划分方法,并应用基于交错网格的有限差分得到了三维频率域电磁响应差分计算格式,采用改进的ICCG(不完全乔尔斯基共轭梯度)方法,对一维变带宽存储的大型复稀疏矩阵进行了求解,得到了随钻电磁波测井响应.计算结果表明:一维变带宽存储方法很好地解决了大型稀疏矩阵的存储问题;改进的ICCG方法得到的结果真实可靠并大大提高了求解效率;随钻电阻率曲线随着井斜角度增大会出现“极化角”,低阻侵入会使“极化角”弱化;相位电阻率曲线受围岩影响较小,受侵入影响较大.  相似文献   

10.
三维泊松方程数值模拟的多重网格方法   总被引:5,自引:1,他引:4       下载免费PDF全文
本文简要介绍了多重网格方法的基本思想和原理,然后应用多重网格(MG)方法求解三维泊松方程,网格尺度从17×17×17逐次增加至257×257×257,并与不完全Chelesky共轭梯度法(ICCG)、Gauss直接解法进行比较,结果表明,MG方法计算速度明显优于ICCG、Gauss方法,对于129×129×129网格的三维数值模拟费时43s,比ICCG法快7倍,而对于257×257×257超大型网格的三维数值模拟也仅需412s.  相似文献   

11.
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.  相似文献   

12.
An accurate and efficient 3D finite-difference (FD) forward algorithm for DC resistivity modelling is developed. In general, the most time-consuming part of FD calculation is to solve large sets of linear equations: Ax = b , where A is a large sparse band symmetric matrix. The direct method using complete Choleski decomposition is quite slow and requires much more computer storage. We have introduced a row-indexed sparse storage mode to store the coefficient matrix A and an incomplete Choleski conjugate-gradient (ICCG) method to solve the large linear systems. By taking advantage of the matrix symmetry and sparsity, the ICCG method converges much more quickly and requires much less computer storage. It takes approximately 15 s on a 533 MHz Pentium computer for a grid with 46 020 nodes, which is approximately 700 times faster than the direct method and 2.5 times faster than the symmetric successive over-relaxation (SSOR) conjugate-gradient method. Compared with 3D finite-element resistivity modelling with the improved ICCG solver, our algorithm is more efficient in terms of number of iterations and computer time. In addition, we solve for the secondary potential in 3D DC resistivity modelling by a simple manipulation of the FD equations. Two numerical examples of a two-layered model and a vertical contact show that the method can achieve much higher accuracy than solving for the total potential directly with the same grid nodes. In addition, a 3D cubic body is simulated, for which the dipole–dipole apparent resistivities agree well with the results obtained with the finite-element and integral-equation methods. In conclusion, the combination of several techniques provides a rapid and accurate 3D FD forward modelling method which is fundamental to 3D resistivity inversion.  相似文献   

13.
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.  相似文献   

14.
We develop an efficient and versatile numerical model for carrying out high-resolution simulations of turbulent flows in natural meandering streams with arbitrarily complex bathymetry. The numerical model solves the 3D, unsteady, incompressible Navier-Stokes and continuity equations in generalized curvilinear coordinates. The method can handle the arbitrary geometrical complexity of natural streams using the sharp-interface curvilinear immersed boundary (CURVIB) method of Ge and Sotiropoulos (2007) [1]. The governing equations are discretized with three-point, central, second-order accurate finite-difference formulas and integrated in time using an efficient, second-order accurate fractional step method. To enable efficient simulations on grids with tens of millions of grid nodes in long and shallow domains typical of natural streams, the algebraic multigrid (AMG) method is used to solve the Poisson equation for the pressure coupled with a matrix-free Krylov solver for the momentum equations. Depending on the desired level of resolution and available computational resources, the numerical model can either simulate, via direct numerical simulation (DNS), large-eddy simulation (LES), or unsteady Reynolds-averaged Navier-Stokes (URANS) modeling. The potential of the model as a powerful tool for simulating energetic coherent structures in turbulent flows in natural river reaches is demonstrated by applying it to carry out LES and URANS in a 50-m long natural meandering stream at resolution sufficiently fine to capture vortex shedding from centimeter-scale roughness elements on the bed. The accuracy of the simulations is demonstrated by comparisons with experimental data and the relative performance of the LES and URANS models is also discussed.  相似文献   

15.
郭泽秋  董浩 《地球物理学报》2019,62(10):3898-3911
本研究针对大地电磁测深法有限元数值模拟中,迭代法求解线性方程组效率较低的问题,利用亥姆霍兹分解原理,将电场矢量双旋度方程的预条件问题转化为基于矢量位的泊松问题和基于标量位的拉普拉斯问题,并在四面体非结构化棱边元离散的情况下,借助节点元辅助网格离散上述预条件问题,进一步利用代数多重网格方法(AMG)实施求解,最终实现预条件算法.利用经典的COMMEMI理论模型进行试算并与前人的积分方程解进行对比,验证了本文数值模拟程序与预条件方法的正确性和可靠性.此外,利用不同自由度规模的实验模型对这一预条件算法的效率进行了测试.结果表明,这一算法可以有效地提升大地电磁测深法棱边有限元数值模拟迭代法的收敛性,计算效率较通用的不完全LU分解预条件算法明显更高;在较大自由度网格(>1000万)数值模拟计算中,其算法效率及内存占用相对直接解法有较大优势,也使小型工作站上利用较大自由度的有限元网格进行大地电磁测深数值模拟计算成为可能.  相似文献   

16.
为了克服空气层和地表耦合以及避免一次场计算,开发适合不同类型场源、不同应用范围的频率域三维正演模拟统一平台,本文从麦克斯韦基本方程出发,推导基于Lorenz规范条件的磁矢势和标势耦合方程;通过将不同类型场源分解成一系列短导线(电性)源组合,采用交错网格采样和有限体积技术对方程进行离散得到对称大型稀疏线性方程组,并采用Jacobi迭代预处理QMR(Quasi-Minimum-Residual,拟最小残差)算法进行求解,我们成功实现不同类型场源、不同应用范围的频率域电磁法三维正演模拟.通过层状模型下大地电磁法以及有限长接地导线和大回线磁性源激发下的电磁场响应模拟,并与一维解析解对比验证算法的有效性.进而,我们利用该算法平台的模拟结果对典型地电模型在不同场源激发下频率域电磁法响应特征进行对比分析.本文算法研究及实现为建立频率域电磁法三维正反演统一框架打下基础.  相似文献   

17.
Among electromagnetic sounding techniques, the Mélos method possesses the specific feature of including an apparent resistivity computation. This acts as a normalizing scheme so that 2D modelling results can be obtained without accounting for a true 3D source. However, in order to get reliable numerical modelling results for a 2D magnetic dipole source, improved algorithms are required in order to apply the standard finite-element technique: quadratic basis functions must be used in place of linear basis functions, and a more sophisticated method than conventional ones is necessary for properly solving the resulting system of linear equations. Such modelling results have been used to study theoretical responses for the Mélos method in the search for conductive bodies in mineral exploration. Two sets of models are presented and discussed. They show that the typical Mélos response to a conductive target is a bipolar anomaly on the apparent resistivity pseudo-section, with a conductive pole at low frequency which is centred above the target.  相似文献   

18.
基于MNS技术的三维大地电磁场正演模拟方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张罗磊  于鹏  王家林  陈晓  李洋 《地球物理学报》2010,53(11):2715-2723
目前大地电磁三维正演模拟的主要问题是计算效率偏低.Pankratov等提出了一种精确的、稳定的和宽频的三维电磁场正演计算方法,并成功应用于大地电磁场正演模拟中.该方法使用体积积分方程法,利用改进的Neumann序列(MNS)技术来求解Maxwell方程,成功地避免了解大型的线性方程组.在本文中针对这一主要问题尝试引入了广义双共轭梯度法来迭代求改进的Neumann序列中的解,与传统的迭代方法相比可以提高迭代的效率.同时使用了将格林函数分解为两部分在波数域求解,这样比常规的利用快速汉克尔变换求解效率更高.最后试验了两个模型,并与三维交错网格有限差分法计算结果相比较,证明该方法的正确与有效,并且通过具体计算表明该方法在精度保证的条件下计算速度上具有明显的优势.  相似文献   

19.
Investigations have shown the existence of a linear relationship between point-source resistivity data and line-source resistivity data through a matrix operator, which paves the way for the efficient transformation of line-source data to the corresponding point-source data and vice versa. The power of these equations has been established by computational examples. The relationship will be useful in the modelling and inversion of resistivity data from 2D structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号