首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the austral summer of 1992–1993 the passage of a storm system drove a strong upper ocean response at 45°S in the mid-South Atlantic. Good in situ observations were obtained. CTD casts revealed that the mixed layer deepened by \sim40 m over 4 days. Wind stirring dominated over buoyancy flux-driven mixing during the onset of high winds. Doppler shear currents further reveal this to be intimately related to inertial dynamics. The penetration depth of inertial currents, which are confined to the mixed layer, increases with time after a wind event, matched by a downward propagation of low values of the Richardson number. This suggests that inertial current shear is instrumental in producing turbulence at the base of the mixed layer. Evolution of inertial transport is simulated using a time series of ship-observed wind stress. Simulated transport is only 30-50% of the observed transport, suggesting that much of the observed inertial motion was forced by an earlier (possibly remote) storm. Close proximity of the subtropical front further complicates the upper ocean response to the storm. A simple heat balance for the upper 100 m reveals that surface cooling and mixing (during the storm) can account for only a small fraction of an apparent \sim1 °C mixed layer cooling.  相似文献   

2.
Integrated observations were made on the South China Sea shelf at 19°37’ N, 112°04’ E, under strong wind and heavy raining weather conditions in August 2005. Current data were obtained using a moored 150-kHz Acoustic Doppler Current Profiler, turbulent kinetic energy dissipation rate were measured with TurboMapII, and temperature was recorded by thermistor chains. Both the mixed layer thickness and the corresponding mean dissipation rate increased after the strong wind bursts. Average surface mixed layer thickness was 13.4 m pre-wind and 22.4 m post-wind, and the average turbulent dissipation rate in the mixed layer pre-wind and post-wind were 4.26 × 10?7 and 1.09 × 10?6 Wkg?1, respectively. The post-wind dissipation rate was 2.5 times larger than the pre-wind dissipation rate in the interior layer and four times larger in the intermediate water column. Spectra and vertical mode analysis revealed that near-inertial motion post-wind, especially with high modes, was strengthened and propagated downward toward the intermediate layer. The downward group velocity of near-inertial current was about 8.1 × 10?5 ms?1 during the strong wind bursts. The mean percentage of wind work transmitted into the intermediate layer is about 4.2 %. The ratio of post-wind high-mode energy to total horizontal kinetic energy increased below the surface mixed layer, which would have caused instabilities and result in turbulent mixing. Based on these data, we discuss a previous parameterization that relates dissipation rate, stratification, and shear variance calculated from baroclinic currents with high modes (higher than mode 1) which concentrate a large fraction of energy.  相似文献   

3.
本文将夏季气候平均的基本气流分解为正压和斜压分量,使用一个线性斜压模式,研究了不同斜压基本气流对热带西北太平洋地区初始气旋性环流扰动低频发展演变的重要作用.其中,控制试验较好地模拟出初始气旋扰动向西北方向传播、在西北太平洋季风槽附近停滞增强、在东亚地区出现经向波列和在南海到海洋大陆地区形成西北—东南向波列等特征.改变斜压分量的敏感性试验结果表明,正压基流不能为西传的初始扰动供给足够的能量;海陆热力差异引起东亚地区的纬向温度梯度和北风垂直切变,是东亚太平洋型经向波列形成和维持的重要因素;当基本气流中的斜压纬向偏差部分线性增大时,扰动的能量会呈e指数迅速增强,提示在气候变化的背景下,基本气流微小的改变可能带来天气或季节内扰动强度的剧烈响应.  相似文献   

4.
Mixed-layer water oscillations in tropical Pacific for ENSO cycle   总被引:2,自引:0,他引:2  
The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated,which show the following results.(1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160°W as its axis and a meridional seesaw pattern with 6-8°N as its transverse axis.The meridional oscillation has a phase lag of about 90° to the zonal oscillation,both oscillations get together to form the El Ni?o/La Ni?a cycle,which be-haves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12°N.(2) There are two main patterns of wind stress anomalies in the tropical Pacific,of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific,and the abnormal cross-equatorial flow wind stress and its corresponding divergence field,which has a sign opposite to that of the equatorial region,in the off-equator of the tropical North Pacific,and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly.(3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle,which results in the sea level tilting,provides an initial potential energy to the mixed layer water oscillation,and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12°N of the North Pacific basin,therefore determines the amplitude and route for ENSO cycle.The ITCZ anomaly has some effects on the phase transition.(4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific,which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation,which in turn intensifies the oscillation.The coupled system of ocean-atmo-sphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle.In conclusion,the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12°N.When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation,the oscillation will be stronger or maintain as it is,while when the force is less than the resistance,the oscillation will be weaker,even break.  相似文献   

5.
Synoptic scale variability of the Southern Ocean wind field in the high-frequency range of barotropic Rossby waves results in transport variations of the Antarctic Circumpolar Current (ACC), which are highly coherent with the bottom pressure field all around the Antarctic continent. The coherence pattern, in contrast to the steady state ACC, is steered by the geostrophic f/h contours passing through Drake Passage and circling closely around the continent. At lower frequencies, with interannual and decadal periods, the correlation with the bottom pressure continues, but baroclinic processes gain importance. For periods exceeding a few years, variations of the ACC transport are in geostrophic balance with the pressure field associated with the baroclinic potential energy stored in the stratification, whereas bottom pressure plays a minor role. The low-frequency variability of the ACC transport is correlated with the baroclinic state variable in the entire Southern Ocean, mediated by baroclinic topographic–planetary Rossby waves that are not bound to f/h contours. To clarify the processes of wave dynamics and pattern correlation, we apply a circulation model with simplified physics (the barotropic–baroclinic-interaction model BARBI) and use two types of wind forcing: the National Centers for Environmental Prediction (NCEP) wind field with integrations spanning three decades and an artificial wind field constructed from the first three empirical orthogonal functions of NCEP combined with a temporal variability according to an autoregressive process. Experiments with this Southern Annular Mode type forcing have been performed for 1,800 years. We analyze the spin-up, trends, and variability of the model runs. Particular emphasis is placed on coherence and correlation patterns between the ACC transport, the wind forcing, the bottom pressure field and the pressure associated with the baroclinic potential energy. A stochastic dynamical model is developed that describes the dominant barotropic and baroclinic processes and represents the spectral properties for a wide range of frequencies, from monthly periods to hundreds of years.  相似文献   

6.
Currents in the northern Bay of La Paz were examined using an 8-month Acoustic Doppler Current Profiler (ADCP) record collected in the upper 185 m of the water column during 2007. Flow variability was dominated by tidal motions, which accounted for 43% (33% diurnal, 10% semidiurnal) of the total kinetic energy. The tidal motions had a pronounced vertical structure dominated within a shallow (∼30 m thick) surface layer by intense counterclockwise (CCW) rotary S1 diurnal radiational currents that were highly coherent with the counterclockwise seabreeze. Motions within the semidiurnal frequency band were primarily associated with significant counterclockwise S2 radiational tidal currents, which were also coherent with the seabreeze. Both S1 and S2 tidal ellipses in the upper layer were aligned perpendicular to the bay entrance with mean semi-major axes of 55 and 20 cm/s, respectively. Below the surface layer, tidal currents decayed rapidly to relatively weak, clockwise rotary barotropic motions. In contrast to those for radiational harmonics, tidal ellipses of the gravitational constituents (M2, K1 and O1) were oriented cross-bay. Energy within the diurnal frequency band in the surface layer was dominated by a coherent component (barotropic, phase-locked baroclinic and radiational), which accounted for roughly 65% (59% from S1 alone) of the total diurnal kinetic energy. Of the remaining diurnal band energy, 18% was associated with an incoherent baroclinic component and 17% with a background noise component. Below 30 m depth, the corresponding estimates are 40%, 32% and 28%, respectively. The persistent, surface-intensified CCW rotary currents observed at the mooring site are assumed to be forced by strong CCW seabreeze winds in the presence of a “slippery” low-density surface layer. This response may be further augmented by topographic narrowing at the bay entrance and by the close proximity of the diurnal and inertial frequency bands in the region.  相似文献   

7.
Abstract

Analysis of a two-layer, flat-bottom, steady-wind driven, eddy-resolving general circulation model reveals a distinct separation in frequency of baroclinic and barotropic motion in the region distant from the model Gulf Stream. The far-field motions at periods less (greater) than about 100 days are predominantly barotropic (baroclinic), unlike the near-field, eddy-generating, free-jet region which contains barotropic and baroclinic energy throughout the modei frequency range. The far-field barotropic energy produces a peak in the model sea-level spectra between 25 and 50 days with a magnitude comparable to energy levels observed in spectra of sea level from oceanic island tide gauges. The far-field barotropic motion is clearly composed of large-scale, resonant, barotropic normal modes drive by mesoscale activity of the turbulent, free-jet region. Oceanic mesoscale turbulence may therefore provide for planetary normal modes an excitation mechanism distinct from atmospheric forcing. The open-ocean, barotropic, model response is very similar to that of a fluctuating-wind driven model, which suggests that atmospheric and intrinsic forcing of mid-ocean eddies may be of comparable importance.  相似文献   

8.
 The role of seamounts in the formation and evolution of sea ice is investigated in a series of numerical experiments with a coupled sea ice–ocean model. Bottom topography, stratification and forcing are configured for the Maud Rise region in the Weddell Sea. The specific flow regime that develops at the seamount as the combined response to steady and tidal forcing consists of free and trapped waves and a vortex cap, which is caused by mean flow and tidal flow rectification. The enhanced variability through tidal motion in particular modifies the mixed layer above the seamount enough to delay and reduce sea-ice formation throughout the winter. The induced sea-ice anomaly spreads and moves westward and affects an area of several 100 000 km2. Process studies reveal the complex interaction between wind, steady and periodic ocean currents: all three are required in the process of generation of the sea ice and mixed layer anomalies (mainly through tidal flow), their detachment from the topography (caused by steady oceanic flow) and the westward translation of the sea-ice anomaly (driven by the time-mean wind).  相似文献   

9.
In order to determine the maintenance mechanisms of the currents of the global ocean, this study investigates the budget of the annual mean kinetic energy (KE) in a high-resolution (0.1° × 0.1°) semi-global ocean simulation. The analysis is based on a separation of the mean KE using the barotropic (i.e., depth-averaged) and baroclinic (the residual) components of velocity. The barotropic and baroclinic KEs dominate in higher and lower latitudes, respectively, with their global average being comparable to each other. The working rates of wind forcing on the barotropic and baroclinic circulations in the global ocean are 243 and 747 gigawatts, respectively. This study presents at least three new results for the budget of the barotropic KE. Firstly, an energy diagram is rederived to show that the work of the barotropic component of the horizontal pressure gradient (HPG) is connected to the work related to the joint effect of baroclinicity and bottom relief (JEBAR), and then to the budget of potential energy (PE). Secondly, the model analysis shows that the globally averaged work of the barotropic HPG (which is connected to the work related to JEBAR and then to the budget of the PE) is nearly zero. This indicates that the wind- and buoyancy-induced barotropic circulations in the global ocean are of the same strength with opposite sign. Thirdly, it is found that the work of the wind forcing on the barotropic component of the simulated Antarctic Circumpolar Current (ACC) is canceled by the combined effect, in equal measure, of the work of the barotropic HPG and the work of dissipative processes for mean KE. This result makes a significant contribution to the discussion on the depth-integrated momentum balance of the ACC. The barotropic KE is dissipated by the effects of bottom frictional stress, lateral frictional stress, and the Reynolds stress, of which more than half is attributed to an unexpectedly large contribution from biharmonic horizontal friction. Future studies should pay more attention to the role of biharmonic friction used in high-resolution numerical models.  相似文献   

10.
Numerical model experiments have been performed to analyze the low-latitude baroclinic continental shelf response to a tropical cyclone. The theory of coastally trapped waves suggests that, provided appropriate slope, latitude, stratification and wind stress, bottom-intensified topographic Rossby waves can be generated by the storm. Based on a scale analysis, the Nicaragua Shelf is chosen to study propagating topographic waves excited by a storm, and a model domain is configured with simplified but similar geometry. The model is forced with wind stress representative of a hurricane translating slowly over the region at 6 km h−1. Scale analysis leads to the assumption that baroclinic Kelvin wave modes have minimal effect on the low-frequency wave motions along the slope, and coastal-trapped waves are restricted to topographic Rossby waves. Analysis of the simulated motions suggests that the shallow part of the continental slope is under the influence of barotropic topographic wave motions and at the deeper part of the slope baroclinic topographic Rossby waves dominate the low-frequency motions. Numerical solutions are in a good agreement with theoretical scale analysis. Characteristics of the simulated baroclinic waves are calculated based on linear theory of bottom-intensified topographic Rossby waves. Simulated waves have periods ranging from 153 to 203 h. The length scale of the waves is from 59 to 87 km. Analysis of energy fluxes for a fixed volume on the slope reveals predominantly along-isobath energy propagation in the direction of the group velocity of a topographic Rossby wave. Another model experiment forced with a faster translating hurricane demonstrates that fast moving tropical cyclones do not excite energetic baroclinic topographic Rossby waves. Instead, robust inertial oscillations are identified over the slope.  相似文献   

11.
基于海南岛至西沙群岛之间深水海域一长达5年的锚定潜标测流资料,采用谱分析、调和分析和动力模态分解等方法主要分析了局部海域内潮的基本特征.结果表明:研究海域的正压和斜压潮均以全日振荡为主,500~900m的海洋中层全日等密度线垂向振幅可达40m;全日内潮主要沿垂直于陆坡方向传播,与天文潮锁相的全日内潮可占全日内潮总能量的41%;海洋上层,O1内潮垂向平均振幅与局地海面高度呈显著正相关关系,K1内潮则表现为夏、冬季增强的半年循环特征;超过70%的O1分潮能量集中于第一、二斜压模态上,K1分潮在第三斜压模态上亦有相当能量.  相似文献   

12.
This study investigates transient eddy activity anomalies in the mid-latitude upper troposphere associated with intensity variability of the wintertime North Pacific subtropical front. Our results show that the meridional gradient of air temperature and baroclinic instability in the mid-latitude atmosphere become stronger as the subtropical front intensifies, and the mid-latitude westerly jet accelerates with barotropic structure. We further divide the mid-latitude atmospheric eddy activities into high-(2–7 days) and low-frequency(10–90 days) eddy activities according to their life periods. We find that, when the oceanic subtropical front intensifies, the high-frequency atmospheric eddy activity in the mid-latitudes strengthens while the low-frequency eddy activity weakens. The stronger high-frequency eddy activity tends to moderate the air temperature gradient and baroclinicity in the mid-latitudes. High-frequency eddy anomalies accelerate the westerly jet on the northern side and downstream of the westerly jet, and enhance the jet with equivalent barotropic structure. In contrast, the weaker low-frequency eddy activity has a negative contribution to zonal wind speed tendency and attenuates the zonal homogenization of the jet. The anomalous thermodynamic forcing of the low-frequency eddy activity helps maintain the meridional gradient of air temperature in the mid-troposphere.  相似文献   

13.
Insight regarding the mean and eddy motion in the Skagerrak/northern North Sea area is gained through an analysis of model-simulated currents, hydrography, kinetic energy and relative vorticity for the 2 years 2000 and 2001. In this a -coordinate ocean model is used. Since the tidal currents are generally strong in the area, care is exercised to distinguish the mesoscale (eddy) motion from higher-frequency motion such as tides, before computing the mean and eddy kinetic energy. The model-simulated response is first compared with available knowledge of the circulation in the area, and when available, also with sea-surface temperature obtained from satellite imagery. It is concluded that the model appears to faithfully reproduce most of what is known, in particularly the upper mixed layer circulation. An analysis of the mean and eddy kinetic energy reveals that many of the mesoscale structures found in the area are recurrent. This is particularly true for the structures off the southern tip of Norway. Also in general, areas of strong mean and eddy kinetic energy are co-located. The exception is the area off the southern tip of Norway, where the eddy kinetic energy is much larger than its mean counterpart. An analysis of the relative vorticity reveals that the variability found is due to the occurrence of recurrent anticyclonic eddies. It is hypothesized that these eddies are generated due to an offshore veering of the Norwegian coastal current (NCC) as it reaches the eastern end of the Norwegian Trench plateau. Here it becomes a free jet, which is then vulnerable to either barotropic instability caused by the horizontal shear in the jet-like structure of the NCC at this point, or a baroclinic (frontal) instability. The latter may come into play when the NCC veers offshore and its relatively fresh water meets the inflowing saline water of Atlantic origin, a frontogenesis that may become strong enough for cyclogenesis to take place. Due to the depth-independent nature of the model-generated eddies, the barotropic instability is the most likely candidate. It remains to resolve the reason for the offshore veering of the NCC. The most likely candidate mechanisms are vortex squeezing or simply that the coastline curvature is large enough for the NCC to separate from the coast in a hydraulic sense.Responsible Editor: Phil Dyke  相似文献   

14.
A three-dimensional baroclinic model of the Balearic Sea region is used to examine the processes influencing the distribution of near-inertial currents and waves in the region. Motion is induced by a spatially uniform wind impulse. By using a uniform wind, Ekman pumping due to spatial variability in the wind is removed with the associated generation of internal waves. However, internal waves can still be produced where stratification intersects topography. The generation and propagation of these waves, together with the spatial distribution of wind-forced inertial oscillations, are examined in detail. Diagnostic calculations show that in the near-coastal region inertial oscillations are inhibited by the coastal boundary. Away from this boundary the magnitude of the inertial oscillations increases, with currents showing a 180° phase shift in the vertical. The inclusion of an along-shelf flow modifies the inertial currents due to non-linear interaction between vorticity in the flow and the inertial oscillations. Prognostic calculations show that besides inertial oscillations internal waves are generated. In a linear model the addition of an along-shelf flow produces a slight reduction in the energy at the near-inertial frequency due to enhanced viscosity associated with the flow and changes in density field. The inclusion of non-linear effects modifies the currents due to inertial oscillations in a manner similar to that found in the diagnostic model. A change in the effective inertial frequency also influences the propagation of the internal waves. However, this does not appear to be the main reason for the enhanced damping of inertial energy, which is due to the along-shelf advection of water of a different density into a region and increased viscosity and mixing associated with the along-shelf flow.Responsible Editor: Phil Dyke  相似文献   

15.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

16.
Stratification is incorporated into an unsteady model of shelf currents by splitting the dynamic response of the flow into two parts, each with its own time scale. The barotropic part of the response is independent of depth and varies rapidly on a short time scale, whereas the baroclinic part depends on depth and changes slowly with time on a long time scale.The three-dimensional model has a continental shelf sloping down from an eastern boundary to the deep ocean. The equations for the barotropic component of the pressure field contain forcing by the wind stress and feedback from the baroclinic field. An integral of the heat equation over the long time scale determines the slow changes in the temperature field and hence in the baroclinic component of the velocity distribution.The temperature field is specified at the start of the numerical calculation. Its subsequent development is controlled by the numerical procedure. It is found that significant changes in the temperature field require a long period of upwelling favourable winds, whereas the longshore currents react more quickly to changes in the wind stress.  相似文献   

17.
Abstract

The generation of stationary Rossby waves by sources of potential vorticity in a westerly flow is examined here in the context of a two-layer, quasi-geostrophic, β-plane model. The response in each layer consists of a combination of a barotropic Rossby wave disturbance that extends far downstream of the source, and a baroclinic disturbance which is evanescent or wave-like in character, depending on the shear and degree of stratification. Contributions from each of these modes in each layer are strongly dependent on the basic flows in each layer; the degree of stratification; and the depths of the two layers. The lower layer response is dominated by an evanescent baroclinic mode when the upper layer westerlies are much larger than those in the lower layer. In this case, weak stationary Rossby waves of large wavelengths are confined to the upper layer and the disturbance in the lower layer is confined to the source region.

Increasing the upper layer flow (with the lower layer flow fixed) increases the Rossby wavelength and decreases the amplitude. Decreasing the lower layer flow (with the upper layer flow fixed) decreases the wavelength and increases the amplitude. Stratification increases the contribution from the barotropic wave-like mode and causes the response to be confined to the lower layer.

The finite amplitude response to westerly flow over two sources of potential vorticity is also considered. In this case stationary Rossby waves induced by both sources interact to reinforce or diminish the downstream wave pattern depending on the separation distance of the sources relative to the Rossby wavelength. For fixed separation distance, enhancement of the downstreatm Rossby waves will only occur for a narrow range of flow variables and stratification.  相似文献   

18.
Two-layer equatorial primitive equations for the free troposphere in the presence of a thin atmospheric boundary layer and thermal dissipation are developed here. An asymptotic theory for the resonant nonlinear interaction of long equatorial baroclinic and barotropic Rossby waves is derived in the presence of such dissipation. In this model, a self-consistent asymptotic derivation establishes that boundary layer flows are generated by meridional pressure gradients in the lower troposphere and give rise to degenerate equatorial Ekman friction. That is to say, the asymptotic model has the property that the dissipation matrix has one eigenvalue which is nearly zero: therefore the dynamics rapidly dissipates flows with pressure at the base of the troposphere and creates barotropic/baroclinic spin up/spin down. The simplified asymptotic equations for the amplitudes of the dissipative equatorial barotropic and baroclinic waves are studied by linear theory and integrated numerically. The results indicate that although the dissipation slightly weakens the tropics to midlatitude connection, strong localized wave packets are nonetheless able to exchange energy between barotropic and baroclinic waves on intraseasonal timescales in the presence of baroclinic mean shear. Interesting dissipation balanced wave-mean flow states are discovered through numerical simulations. In general, the boundary layer dissipation is very efficient for flows in which the barotropic and baroclinic components are of the same sign at the base of the free troposphere whereas the boundary layer dissipation is less efficient for flows whose barotropic and baroclinic components are of opposite sign at the base of the free troposphere.  相似文献   

19.
Two prognostic experiments taking into account real atmospheric forcing for 2006 and 2011 were carried out based on the eddy-resolving numerical model with a horizontal resolution of 1.6 km for the Black Sea. The main dynamic features such as the Rim Current, the Sevastopol, and Batumi anticyclones are reproduced in both experiments. The model results are confirmed via observation data. We accomplished the analysis of simulated circulation and energetics. The results demonstrate that both the vertical viscosity and vertical diffusion along with the energy inflow from the wind have been the main contributors to the annual and seasonal budgets of kinetic and potential energies of the Black Sea circulation. It is shown that two regimes of the Black Sea general circulation are implemented depending on a magnitude of wind contribution to the kinetic energy in winter. Intensive mesoscale eddy formation was observed along the Anatolian, Caucasian, and Crimean coasts. The analysis of the Black Sea circulation and eddy energetics allowed us to conclude that the generation and development of the mesoscale coastal eddies is associated with the barotropic instability in case of intensive coastal currents and is associated with both the barotropic and baroclinic instability in case of weak coastal currents.  相似文献   

20.
A cross-sectional model of an idealised constant depth gulf with a sill at its entrance, connected to a deep ocean, is used to examine the barotropic and baroclinic response of the region to wind forcing. The role of the oceanic boundary condition is also considered. Calculations show that in the case of a tall sill, where the pycnocline intersects the sill, the baroclinic response of the gulf is similar to that of a lake, and internal waves cannot radiate energy out of the gulf. The barotropic response shows free surface oscillations, with nodes located close to the centre of the oceanic basin and entrance to the gulf, with associated barotropic resonant periods. As the sill height is reduced, baroclinic wave energy is radiated from the gulf into the ocean, and the form of the baroclinic response changes from a standing wave (tall sill) as in a lake to a progressive wave (no sill). The location of sea surface elevation nodes and resonant periods changes as the sill height is reduced. Calculations of the barotropic resonant periods with and without stratification could not determine if they were influenced by the presence of stratification, although published analytical theory suggests that they should be able to when energy is lost from the gulf by internal wave radiation. This inability to detect changes in barotropic resonant period due to stratification effects is due to the small change in resonant frequency produced by baroclinic effects, as shown by analytical results, and the broad peak nature of the computed resonant frequency. In the case of a closed offshore boundary (an offshore island), there is a stronger and narrower energy peak at the resonant frequency than when a barotropic radiation condition is applied. However, the influence of stratification upon the resonant frequency could not be accurately determined. Although the offshore boundary was well removed from the gulf to such an extent that any baroclinic waves reflected from it could not reach the gulf within the integration period, it did, however, slightly influence the gulf baroclinic response due to its influence on the barotropic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号