首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To improve the knowledge of the regionally important Continental Terminal 3 (CT3) aquifer in south-western Niger, fifteen magnetic resonance soundings (MRS) were carried out in December 2005 in the vicinity of wells and boreholes. The output MRS geophysical parameters, i.e. water content and decay constants versus depth, were compared to hydrogeological characteristics, i.e. water table depth, total porosity, specific yield and transmissivity estimated from direct measurements, pumping tests and transient groundwater modelling. The MRS-determined parameters were then used to estimate the rates of groundwater recharge.Contained in poorly consolidated Tertiary sandstones, the CT3 aquifer's water table has continuously risen by 4 m in total over the past four decades. Additionally, a significant portion of this increase has occurred in the past decade alone, with an annual rise now ranging between 0.1 and 0.3 m depending on the monitored well. Increase in groundwater recharge due to land clearance and deforestation explains this situation. According to previous estimations, the pre-clearing recharge ranged from 1 to 5 mm per year in 1950–60 s, while more recent recharge rates (1990s–2000s) range from 20 to 50 mm per year. These recharge values are directly affected by estimated aquifer specific yield value, while the spatial variation of rates of water table rise can be attributed to large scale hydrodynamic heterogeneities in the aquifer. However, few field measurements were available to confirm these assumptions.The main results of this study are: (1) The water table depth and aquifer transmissivity are estimated from MRS output parameters with an average accuracy of ± 10% and ± 9% respectively. (2) The MRS-determined water content is linked to both the total porosity and the specific yield of the aquifer, but no quantitative formulation can be proposed as yet. (3) Using the average MRS-determined water content over the investigated area, i.e. 13%, the groundwater recharge rates can be estimated to be ~ 2 mm per year in the 1950–1960s (pre-clearing period), and ~ 23 mm per year for the last decade. (4) The variations in specific yield and transmissivity cannot explain by themselves the spatial variability of the rise of the water table. (5) The ranges in transmissivity and water content obtained from MRS are more realistic than the groundwater modelling outputs. Therefore, MRS could be used to better constrain the aquifer parameters in groundwater modelling with a dense site network.Finally, this work illustrates how MRS can successfully improve characterisation and transient multi-year groundwater balance of commonly found sedimentary aquifers, particularly when integrated with well observations and pumping tests.  相似文献   

2.
Water level time series from groundwater production wells offer a transient dataset that can be used to estimate aquifer properties in areas with active groundwater development. This article describes a new parameter estimation method to infer aquifer properties from such datasets. Specifically, the method analyzes long‐term water level measurements from multiple, interacting groundwater production wells and relies on temporal water level derivatives to estimate the aquifer transmissivity and storativity. Analytically modeled derivatives are compared to derivatives calculated directly from the observed water level data; an optimization technique is used to identify best‐fitting transmissivity and storativity values that minimize the difference between modeled and observed derivatives. We demonstrate how the consideration of derivative (slope) behavior eliminates uncertainty associated with static water levels and well‐loss coefficients, enabling effective use of water level data from groundwater production wells. The method is applied to time‐series data collected over a period of 6 years from a municipal well field operating in the Denver Basin, Colorado (USA). The estimated aquifer properties are shown to be consistent with previously published values. The parameter estimation method is further tested using synthetic water level time series generated with a numerical model that incorporates the style of heterogeneity that occurs in the Denver Basin sandstone aquifers.  相似文献   

3.
The productivity and the water quality of coastal aquifers can be highly heterogeneous in a complex environment. The characterization of these aquifers can be improved by hydrogeological and complementary geophysical surveys. Such an integrated approach is developed in a non-consolidated coastal aquifer in Myanmar (previously named Burma).A preliminary hydrogeological survey is conducted to know better the targeted aquifers. Then, 25 sites are selected to characterize aquifers through borehole drillings and pumping tests implementation. In the same sites, magnetic resonance soundings (MRS) and vertical electrical soundings (VES) are carried out. Geophysical results are compared to hydrogeological data, and geophysical parameters are used to characterize aquifers using conversion equations. Finally, combining the analysis of technical and economical impacts of geophysics, a methodology is proposed to characterize non-consolidated coastal aquifers.Depth and thickness of saturated zone is determined by means of MRS in 68% of the sites (evaluated with 34 soundings). The average accuracy of confined storativity estimated with MRS is ± 6% (evaluated over 7 pumping tests) whereas the average accuracy of transmissivity estimation with MRS is ± 45% (evaluated using 15 pumping tests). To reduce uncertainty in VES interpretation, the aquifer geometry estimated with MRS is used as a fixed parameter in VES inversion. The accuracy of groundwater electrical conductivity evaluation from 15 VES is enough to estimate the risk of water salinity. In addition, the maximum depth of penetration of the MRS depends on the rocks' electrical resistivity and is between 20 and 80 m at the study area.  相似文献   

4.
Forced and free oscillations of water level were recorded in the YuZ-5 well, Kamchatka due to the passage of seismic waves from the Sumatra-Andaman earthquake of December 26, 2004, M w = 9.3, hypocentral distance 8250 km. The greatest amplitude of water level oscillations, at least 5 cm, was observed during the onset of seismic surface waves with a typical period of 20–50 s. The total duration of the forced and free water level oscillations was about ten hours. The available theoretical models that describe oscillations of water level in a well due to seismic waves and rapid injection of water were used to estimate the transmissivity of the aquifer. The values obtained exceed by at least two orders of magnitude the transmissivity derived from pumping test measurements. A hypothesis was proposed to explain the temporary increase in aquifer transmissivity during the passage of seismic waves by invoking disturbances in the structure of the crack-pore space and a sharp increase in aquifer rock permeability.  相似文献   

5.
M. C. Tom Kuo 《Ground water》2022,60(4):510-517
Few published data are available for two-phase flow in fractures from field studies. All measurements of relative permeability reported in the literature were done in laboratory-scale. The in situ water saturations are normally not known for multiphase flow in natural fractures; therefore, the direct measurements of relative permeability are difficult in field-scale. With the help of a case study before and after the 2008 Mw 5.4 Antung earthquake, groundwater radon was used as a tracer to determine the gas and water saturations in a small naturally fractured aquifer. Well tests were also conducted to estimate aquifer transmissivity before and after the 2008 Antung earthquake. Anomalous declines in both groundwater radon concentration and transmissivity were observed precursory to the 2008 Antung earthquake. Both declines are two precursory phenomena having a common effect of gas bubbles. Using the data from well tests and radon tracer, one data point of water relative permeability can be obtained for in situ fractures. This data point reveals strong phase interference between water and gas bubbles for multiphase flow in natural fractures. Both the data of well tests and radon tracer are essential to gain an improved understanding of mass transfer behavior of groundwater-dissolved gases between water and gas phases.  相似文献   

6.
The aim of this study is to define and characterize water bearing geological formation and to test the possibility of using geophysical techniques to determine the hydrogeological parameters in three areas in the Vientiane basin, Laos. The investigated areas are part of the Khorat Plateau where halite is naturally occurring at depths as shallow as 50 m in the Thangon Formation. Magnetic Resonance Sounding (MRS) has been used in combination with Vertical Electrical Sounding (VES) in different geological environments. In total, 46 sites have been investigated and the MRS and VES recognized the stratigraphic unit N2Q1–3, consisting of alluvial unconsolidated sediments, as the main water bearing unit. The aquifer thickness varies usually between 10 and 40 m and the depth to the main aquifer range from 5 to 15 m. The free water content is here up to 30%, and the decay times vary between 100 and 400 ms, suggesting a mean pore size equivalent to fine sand to gravel. The resistivity is highly variable, but usually around 10–1500 Ω-m, except for some sites in areas 1 and 2, where the aquifer is of low resistivity, probably related to salt water. Hydraulic and storage-related parameters such as transmissivity, hydraulic column, have been estimated from the MRS. The MRS together with VES has been shown to be a useful and important tool for identifying and distinguishing freshwater from possible salt-affected water as well as the salt-related clay layer of the Thangon Formation. This clay layer is characterized by very low free water content and a resistivity lower than 5 Ω-m and can be found in all 3 areas at depths from 15 to 50 m.  相似文献   

7.
Accurate estimation of aquifer parameters, especially from crystalline hard rock area, assumes a special significance for management of groundwater resources. The aquifer parameters are usually estimated through pumping tests carried out on water wells. While it may be costly and time consuming for carrying out pumping tests at a number of sites, the application of geophysical methods in combination with hydro-geochemical information proves to be potential and cost effective to estimate aquifer parameters. Here a method to estimate aquifer parameters such as hydraulic conductivity, formation factor, porosity and transmissivity is presented by utilizing electrical conductivity values analysed via hydro-geochemical analysis of existing wells and the respective vertical electrical sounding (VES) points of Sindhudurg district, western Maharashtra, India. Further, prior to interpolating the distribution of aquifer parameters of the study area, variogram modelling was carried out using data driven techniques of kriging, automatic relevance determination based Bayesian neural networks (ARD-BNN) and adaptive neuro-fuzzy neural networks (ANFIS). In total, four variogram model fitting techniques such as spherical, exponential, ARD-BNN and ANFIS were compared. According to the obtained results, the spherical variogram model in interpolating transmissivity, ARD-BNN variogram model in interpolating porosity, exponential variogram model in interpolating aquifer thickness and ANFIS variogram model in interpolating hydraulic conductivity outperformed rest of the variogram models. Accordingly, the accurate aquifer parameters maps of the study area were produced by using the best variogram model. The present results suggest that there are relatively high value of hydraulic conductivity, porosity and transmissivity at Parule, Mogarne, Kudal, and Zarap, which would be useful to characterize the aquifer system over western Maharashtra.  相似文献   

8.
Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of this interaction is needed for understanding groundwater recharge, contaminants migration, and for managing surface water and groundwater resources. A model‐based investigation of a field experiment in a riparian zone of the Schwarzbach river, a tributary of the Rhine River in Germany, was conducted to understand stream–aquifer interaction under alternative gaining and losing streamflow conditions. An equivalent streambed permeability, estimated by inverting aquifer responses to flood waves, shows that streambed permeability increased during infiltration of stream water to aquifer and decreased during exfiltration. Aquifer permeability realizations generated by multiple‐point geostatistics exhibit a high degree of heterogeneity and anisotropy. A coupled surface water groundwater flow model was developed incorporating the time‐varying streambed permeability and heterogeneous aquifer permeability realizations. The model was able to reproduce varying pressure heads at two observation wells near the stream over a period of 55 days. A Monte Carlo analysis was also carried out to simulate groundwater flow, its age distribution, and the release of a hypothetical wastewater plume into the aquifer from the stream. Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during the infiltration periods was constrained by aquifer permeability; (b) during exfiltration, this flux was constrained by the reduced streambed permeability; (c) the effect of temporally variable streambed permeability and aquifer heterogeneity were found important to improve the accurate capture of the uncertainty; and (d) probabilistic infiltration paths in the aquifer reveal that such pathways and the associated prediction of the extent of the contaminant plume are highly dependent on aquifer heterogeneity.  相似文献   

9.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   

10.
A mathematical model to simulate stream/aquifer interactions in an unconfined aquifer subjected to time varying river stage was developed from the linearized Boussinesq equation using the principle of superposition and the concept of semigroups. The mathematical model requires an estimate of three parameters to simulate ground-water elevations; transmissivity, specific yield, and recharge. The solution has physical significance and includes terms for the steady-state water level, the steady-state water level as influenced by a change in river stage, a transient redistribution of water levels in the aquifer from the previous day, and a transient change in water level caused by a change in river stage. The mathematical model was tested using observed water table elevations at three locations across a 2-km-wide alluvial valley aquifer. The average absolute deviation between observed and simulated daily water levels was 0.09 m. The difference in river stage over the test year was 4.9 m.  相似文献   

11.
用地面核磁共振方法评估含水层涌水量的实例   总被引:7,自引:4,他引:3       下载免费PDF全文
地面核磁共振(NMR)方法是地球物理上采用的探测地下水的最新方法,能够探测地下含水层中的自由水.但是有时会出现对地下含水层的出水量判断失误的现象,这种失误发生的主要原因是由于IRIS仪器设计时假设利用NMR信号的弛豫时问就能够区分地下含水层中的自由水和束缚水,实际上弛豫时间取决于以下几个参数即:孔隙度、渗透率和导水率.地层孔隙水中氢质子弛豫时间不仅与其本身的弛豫特点有关,还与岩石孔隙结构、成份密切相关.为了更好的理解以上这些参数对地下含水层涌水量的影响,本文讨论了含水多孔介质的弛豫特性,研究有效孔隙度与含水量之间的关系,给出计算渗透率和导水率的方法,利用几个实测地点数据资料分析地下含水层岩性对涌水量的影响,结果表明地层中平均含水量大而且含水地层弛豫时间较长的地点才能获得较大的涌水量.  相似文献   

12.
孙小龙  向阳  李源 《地震学报》2020,42(6):719-731
以河南范县井为例,利用不同的水力响应模型分析了井水位对地震波、固体潮和气压的响应特征,并基于相关水力响应模型反演估算了含水层的水力参数。结果显示:在高频加载作用过程中,井-含水层系统中的水流模式以水平向为主,而在低频加载作用过程中,则为水平向和垂直向共存的混合模式;利用周期为10—102 s的高频段的地震波响应模型估算的含水层导水系数值较大,为7.20×10?3 m2/s,利用周期为3.75×104 s的低频段的固体潮响应模型估算的含水层导水系数值较小,为2.02×10?6 m2/s,而利用周期为102—104 s的中等频率段的气压响应模型得到的估算值介于二者之间,为3.44×10?5 m2/s。由此分析认为,在周期性加载作用过程中,井-含水层系统内的水流模式与加载频率有关,基于不同水力响应模型反演估算的含水层水力参数存在尺度效应。本研究取得的认识,既可为井水位动态响应的机理解释提供理论基础,也可为目标含水层水力参数的原位测量提供技术支撑。   相似文献   

13.
Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation.

Aquifers with an average hydraulic conductivity of 0.55 m day−1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day−1). These aquifers are separated by an aquitard (0.065 m day−1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method.

Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4–50 m2 day−1) and is capable of producing from less than 5 to over 230 kl day−1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived.

The overlying aquitard has a low transmissivity (< 1 m2 day−1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m2 day−1 to over 10 m2 day−1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl−1 to greater than 250000 mgl−1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.  相似文献   


14.
Cem B. Avci  A. Ufuk Sahin 《水文研究》2014,28(23):5739-5754
Pumping tests are one of the most commonly used in situ testing techniques for assessing aquifer hydraulic properties. Numerous researches have been conducted to predict the effects of aquifer heterogeneity on the groundwater levels during pumping tests. The objectives of the present work were as follows: (1) to predict drawdown conditions and to estimate aquifer properties during pumping tests undertaken in radially symmetric heterogeneous aquifers, and (2) to identify a method for assessing the transmissivity field along the radial coordinate in radially symmetric and fully heterogeneous transmissivity fields. The first objective was achieved by expanding an existing analytical drawdown formulation that was valid for a radially symmetric confined aquifer with two concentric zones around the pumping well to an N concentric zone confined aquifer having a constant transmissivity value within each zone. The formulation was evaluated for aquifers with three and four concentric zones to assess the effects of the transmissivity field on the drawdown conditions. The specific conditions under which aquifer properties could be identified using traditional methods of analysis were also evaluated. The second objective was achieved by implementing the inverse solution algorithm (ISA), which was developed for petroleum reservoirs to groundwater aquifer settings. The results showed that the drawdown values are influenced by a volumetric integral of a weighting function and the transmissivity field within the cone of depression. The weighting function migrates in tandem with the expanding cone of depression. The ability of the ISA to predict radially symmetric and log‐normally distributed transmissivity fields was assessed against analytical and numerical benchmarks. The results of this investigation indicated that the ISA method is a viable technique for evaluating the radial transmissivity variations of heterogeneous aquifer settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Geographical Information System (GIS) has been used in this paper to delineate groundwater resources potential in the western part of greater Kushtia district of Bangladesh, where urgent attention for augmentation of irrigation water supply is required. Thematic maps of transmissivity, hydraulic conductivity, specific yield, net recharge, aquifer thickness, surface water bodies, aquifer resistivity, overburden aquitard thickness and its resistivity have been prepared and assigned weight according to their relative importance using Analytical Hierarchical Process for the preparation of groundwater potential model. Since the values within each thematic map vary significantly, they are classified into various ranges or types and assigned ratings. Finally, the thematic maps are integrated using GIS to prepare the groundwater potential map for the study area in terms of Ground Water Potential Index (GWPI). The evolved map indicates that 22.51% of the study area have GWPI more than 0.70 and therefore, have excellent prospective for exploitation. About 69.12% of the area with GWPI ranging from 0.50 to 0.70 is also quite promising for groundwater abstraction, while the rest 8.37% area having GWPI below 0.50 indicates moderate potential. The obtained map of groundwater potential is found in good agreement with the yields of available pumping test data.  相似文献   

16.
In the last five years, magnetic resonance sounding (MRS), as a non-invasive geophysical method, has emerged as a new technique for ground water investigation in Vietnam. In this paper, we present the general theoretical basis of this method together with acquisition, processing, and interpretation of the MRS data. We show a case study of MRS surveys in sand dunes area in order to characterize aquifers situated in the southern part of Vietnam. From the interpretation of MRS soundings we delimited an aquifer layer in the subsurface with strong lateral variations for which we determined the depth at 44 m and water content between 3% and 9.5%. The longitudinal relaxation constant T*1 is about 250 m s, while the transverse relaxation T*2 is between 150–200 m s. That indicates fine to medium grain size and thus low to medium hydraulic permeability. These results are confirmed by the observations from the well LK1 between 45 to 70 m. The results of other MRS measurements showed the presence of a low water bearing aquifer and were confirmed by the observations in two other wells.  相似文献   

17.
Resolution of MRS applied to the characterization of hard-rock aquifers   总被引:4,自引:0,他引:4  
The performance of the Magnetic Resonance Sounding (MRS) method applied to the investigation of heterogeneous hard-rock aquifers was studied. It was shown using both numerical modeling and field measurements that MRS could be applied to the investigation of the weathered part of hard-rock aquifers when the product of the free water content multiplied by the thickness of the aquifer is >0.2 (for example, 10-m-thick layer with a 2% water content). Using a currently available one-dimensional MRS system, the method allows the characterization of two-dimensional subsurface structures with acceptable accuracy when the size of the subsurface anomaly is equal to or greater than the MRS loop. However, the fractured part of hard-rock aquifers characterized by low effective porosity (<0.5%) cannot be resolved using currently available MRS equipment. It was found that shallow water in the weathered part of the aquifer may screen MRS signals from deeper water-saturated layers, thus further reducing the possibility of investigating deeper fractured aquifers. A field study using the NUMIS(plus) MRS system developed by IRIS Instruments was carried out on an experimental watershed in southern India. A heterogeneous unconfined aquifer in a gneissic formation was successfully localized, and MRS results were confirmed by drilling shortly after the geophysical study. The top of the aquifer revealed by MRS was found to be in a good agreement with observed static water level measurements in boreholes.  相似文献   

18.
Surface water is a scarce resource in Namibia with about sixty percent of Namibia's population dependent on groundwater for drinking purposes. With increasing population, the country faces water challenges and thus groundwater resources need to be managed properly. One important aspect of Integrated Water Resources Management is the protection of water resources, including protection of groundwater from contamination and over-exploitation. This study explores vulnerability mapping as a basic tool for protecting groundwater resources from pollution. It estimates groundwater vulnerability to pollution in the upper Niipele sub-basin of the Cuvelai-Etosha in Northern Namibia using the DRASTIC index. The DRASTIC index uses GIS to estimate groundwater vulnerability by overlaying different spatially referenced hydrogeological parameters that affect groundwater contamination. The study assesses the discontinuous perched aquifer (KDP) and the Ohangwena multi-layered aquifer 1 (KOH-1). For perched aquifers, point data was regionalized by a hydrotope approach whereas for KOH-1 aquifer, inverse distance weighting was used. The hydrotope approach categorized different parts of the hydrogeological system with similar properties into five hydrotopes. The result suggests that the discontinuous perched aquifers are more vulnerable than Ohangwena multi-layered aquifer 1. This implies that vulnerability increases with decreasing depth to water table because contaminants have short travel time to reach the aquifer when they are introduced on land surface. The nitrate concentration ranges between 2 and 288 mg/l in perched aquifers while in Ohangwena multi-layered aquifer 1, it ranges between 1 and 133 mg/l. It was observed that perched aquifers have high nitrate concentrations than Ohangwena 1 aquifer, which correlates well with the vulnerability results.  相似文献   

19.
Inversion of resistivity in Magnetic Resonance Sounding   总被引:3,自引:0,他引:3  
Magnetic Resonance Sounding (MRS, or Surface Nuclear Magnetic Resonance - SNMR) is used for groundwater exploration and aquifer characterization. Since this is an electromagnetic method, the excitation magnetic field depends on the resistivity of the subsurface. Therefore, the resistivity has to be taken into account in the inversion: either as a priori information or as an inversion parameter during the inversion process, as introduced in the presented paper. Studies with synthetic data show that water content and resistivity can be resolved for a low resistive aquifer even using only the amplitude of the MRS signal. However, the inversion result can be significantly improved using amplitude and phase of the MRS signal. The successful implementation of the inversion for field data shows that the resistivities derived from MRS are comparable to those from conventional geoelectric methods such as DC resistivity and transient electromagnetic. By having information about both the resistivity and the water content, MRS inversions give information about the quality of the water in the aquifer. This is of utmost interest in hydrogeological studies as this specific information cannot be determined solely by geoelectric measurements, due to the nonunique dependence of resistivity on water content and salinity.  相似文献   

20.
Abstract

The Khulais plain lies within a typical arid area in western Saudi Arabia. Groundwater occurs within two aquifers in the area: the alluvium of the wadi system, and the sandy layers of the Cretaceous-Tertiary sedimentary succession. Detailed field investigations and laboratory analysis helped in determining the aquifer properties for each of the water-bearing units. Groundwater movement has been thoroughly studied, and distribution maps prepared to explain the variations in transmissivity, permeability, porosity and specific yield. An attempt has been made to estimate volumes of groundwater flow towards the plain. This study presents a first attempt towards determining groundwater availability in the Cretaceous-Tertiary succession of this part of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号