首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. Teleseismic P and S arrival times to North American stations are obtained from the ISC bulletins for the 10-yr period 1964–73, and relative travel-time delays are calculated with respect to standard tables. Station anomalies as well as variations of the delays with azimuth and epicentral distance from station are analysed, and the location of the velocity anomalies responsible for them is discussed. Inversion of the P delays to infer upper mantle velocity structure down to a depth of 700 km is obtained using three-dimensional blocks, as proposed by Aki, Christofferson & Husebye. Three layers can be resolved in this depth range. It is found that the heterogeneities responsible for the travel-time delays are primarily located in the first 250 km of the upper mantle, and that they correlate with surface features. Significant heterogeneities subsist to depths of at least 700 km and their broad scale pattern also correlates with the surface features: in the third layer (500 to 700 km depth) there is an increase of velocity from the West to the East of the United States, while the second layer (250 to 450 km depth) exhibits a reversed pattern. A tentative interpretation of these deeper anomalies is made, as being due mainly to topography of the major upper mantle discontinuities, near 400 and 650 km depth.  相似文献   

2.
We image the Hikurangi subduction zone using receiver functions derived from teleseismic earthquakes. Migrated receiver functions show a northwest dipping low shear wave feature down to 60 km depth, which we associate with the crust of the subducted Pacific Plate. Receiver functions (RF) at several stations also show a pair of negative and positive polarity phases with associated conversion depths of ∼20–26 km, where the subducted Pacific Plate is at a depth of ∼40–50 km beneath the overlying Australian Plate. RF inversion solutions model these phases with a thin low S -wave velocity zone less than 4 km thick, and an S -wave velocity contrast of more than ∼0.5 km s−1 with the overlying crust. We interpret this phase pair as representing fluids near the base of the lower crust of the Australian Plate, directly overlying the forearc mantle wedge.  相似文献   

3.
Seismic anisotropy within the uppermost mantle of southern Germany   总被引:1,自引:0,他引:1  
This paper presents an updated interpretation of seismic anisotropy within the uppermost mantle of southern Germany. The dense network of reversed and crossing refraction profiles in this area made it possible to observe almost 900 traveltimes of the Pn phase that could be effectively used in a time-term analysis to determine horizontal velocity distribution immediately below the Moho. For 12 crossing profiles, amplitude ratios of the Pn phase compared to the dominant crustal phase were utilized to resolve azimuthally dependent velocity gradients with depth. A P -wave anisotropy of 3–4 per cent in a horizontal plane immediately below the Moho at a depth of 30 km, increasing to 11 per cent at a depth of 40 km, was determined. For the axis of the highest velocity of about 8.03 km s−1 at a depth of 30 km a direction of N31°F was obtained. The azimuthal dependence of the observed Pn amplitude is explained by an azimuth-dependent sub-Moho velocity gradient decreasing from 0.06 s−1 in the fast direction to 0 s−1 in the slow direction of horizontal P -wave velocity. From the seismic results in this study a petrological model suggesting a change of modal composition and percentage of oriented olivine with depth was derived.  相似文献   

4.
We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S , Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200–800 km), moderate-to-large magnitude (5.5–7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21–46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7–8 km s−1) and S -wave velocities (2.5–4.7  km s−1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa.  相似文献   

5.
A curious observation has been made on radial receiver functions calculated from teleseisms recorded by 29 broad-band seismometers distributed over Iceland. The arrival time of the direct P phase of the radial receiver functions depends critically upon the azimuth of the teleseismic source. For a seismic station in West Iceland, the direct P  phase of the radial receiver function arrives consistently later for easterly source azimuths than for westerly source azimuths. The reverse applies for stations in East Iceland. In the original seismograms, the delayed P phase of the receiver function appears up to 450 ms later on the radial than on the vertical component. The seismometer locations in East and West Iceland are separated by the Neovolcanic Zone, a constructive plate boundary. The delayed P phases occur for seismic rays travelling across this zone. However, it is not obvious how wave propagation across the plate boundary zone could cause the observed delays. The tentative explanation proposed here involves the regional dip of the Icelandic lava sequences towards the Neovolcanic Zone. A dipping interface at shallow depth results in a P–S converted phase arriving shortly after the P phase. These phases cannot be separated in the radial receiver functions, given the bandwidth of the observed signals. However, a calculation of receiver functions from estimates of the P , SV and SH wavefields clearly reveals a P–S converted phase at about 500 ms for easterly source azimuths in West Iceland and for westerly source azimuths in East Iceland. The amplitudes of the direct P phase and the P–S phase converted at a dipping interface would be expected to vary strongly with azimuth in accordance with the observed behaviour.  相似文献   

6.
Summary. Travel times and waveforms of long-period SH -waves recorded at distances of 10–30° and some SS waveforms are used to constrain the upper mantle velocities down to a depth of 400km beneath both the Indian Shield and the Tibetan Plateau. the shear velocity in the uppermost mantle beneath both the Indian Shield and the Tibetan Plateau is high and close to 4.7 km s−1. the Indian Shield has a fairly thick high velocity lid, and the mean velocity between 40 and 250 km is between 4.58 and 4.68 km s−1. In contrast, S -wave travel times and waveforms of S -waves, as well as a few for SS , show that the mean velocity between 70 and 250km beneath the central and northern part of the Tibetan Plateau is slower by 4 per cent or more than that beneath the Indian Shield and probably is between 4.4 and 4.5km s−1. No large differences in the structure of the two areas below 250 km are required to explain both the arrival times and the waveforms of SH phases crossing Tibet or the Indian Shield. These results show that the structure of Tibet is not that of a shield and imply that the Indian plate is not underthrusting the whole of the Tibetan Plateau at the present time.  相似文献   

7.
b
A two ship refraction profile was undertaken on the Australian continental shelf during the Banda Sea geophysical program, carried out by the Woods Hole Oceanographic Institution, the Scripps Institution of Oceanography and the Geological Survey of Indonesia. S waves originating close to the sea bottom were observed to distances of up to 1150 km at an array of stations in northern Australia.
These observations are interpreted as implying S mantle velocities of 4.60 km s-1 from a depth of 45 km to a depth of 76 km and 4.72 km s-1 below a depth of 76 km.
Ratios of the P and S travel times (Vp/Vs) have been determined to be 1.74 in the crust rising to a value of greater than 1.79 below a velocity discontinuity at a depth of 200 km. It is inferred that this high value arises because the effect of temperature is greater for S than for P .
Using the data from this and other studies in the shield region of Northern Australia it has been found that the S travel times are significantly less than predicted by the Jeffreys—Bullen tables.  相似文献   

8.
We infer the lithospheric structure in eastern Turkey using teleseismic and regional events recorded by 29 broad-band stations from the Eastern Turkey Seismic Experiment (ETSE). We combine the surface wave group velocities (Rayleigh and Love) with telesesimic receiver functions to jointly invert for the S -wave velocity structure, Moho depth and mantle-lid (lithospheric mantle) thickness. We also estimated the transverse anisotropy due to Love and Rayleigh velocity discrepancies. We found anomalously low shear wave velocities underneath the Anatolian Plateau. Average crustal thickness is 36 km in the Arabian Plate, 44 km in Anatolian Block and 48 km in the Anatolian Plateau. We observe very low shear wave velocities at the crustal portion (30–38 km) of the northeastern part of the Anatolian Plateau. The lithospheric mantle thickness is either not thick enough to resolve it or it is completely removed underneath the Anatolian Plateau. The shear velocities and anisotropy down to 100 km depth suggest that the average lithosphere–asthenosphere boundary in the Arabian Plate is about 90 and 70 km in Anatolian block. Adding the surface waves to the receiver functions is necessary to constrain the trade-off between velocity and the thickness. We find slower velocities than with the receiver function data alone. The study reveals three different lithospheric structures in eastern Turkey: the Anatolian plateau (east of Karliova Triple Junction), the Anatolian block and the northernmost portion of the Arabian plate. The boundary of lithospheric structure differences coincides with the major tectonic boundaries.  相似文献   

9.
P and S receiver functions obtained from a portable array of 34 broad-band stations in east central China provide a detailed image of the crust–mantle and lithosphere–asthenosphere boundaries (LAB) in the Dabie Shan and its adjacent areas. Clear S -to- P converted waves produced at the LAB show a thin lithosphere beneath the whole study area. Based on our results, the thickest lithosphere of 72 km is observed beneath the southern part of the area within the Yangtze craton, whereas beneath the North-China platform, the lithosphere is only 60 km thick. S receiver functions also reveal, in good agreement with P receiver functions, a maximum depth of the Moho beneath the Dabie Shan orogen at approximately 40 km. Furthermore, we interpret the structural difference at 32° latitude as the probable location of the mantle suture formed between the Yangtze and the Sino-Korean cratons.  相似文献   

10.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

11.
Crustal and upper-mantle seismic discontinuities beneath eastern Turkey are imaged using teleseismic S -to- P converted phases. Three crustal phases are observed: the Moho with depth ranging between 30 and 55 km, indicating variable tectonic regimes within this continental collision zone; an upper-crustal discontinuity at approximately 10 km depth; and various crustal low-velocity zones, possibly associated with recent Quaternary volcanism. Imaging of the upper mantle is complicated by the 3-D geometry of the region, in particular due to the Bitlis–Zagros suture zone. However, several upper-mantle S -to- P converted phase are identified as being the signature of the lithosphere–asthenosphere boundary (LAB). The inferred LAB for the Eastern Anatolian Accretionary Complex indicates that eastern Turkey has an anomalously thin (between ∼60 and 80 km) lithosphere which is consistent with an oceanic slab detachment model. The observed LAB phases for the Arabian shield and Iranian plateau indicate that lithospheric thickness for these stable regions is on the order of 100 to 125 km thick, which is typical of continental margins.  相似文献   

12.
The velocity spectrum stacking method is applied to receiver functions from stations ATD and AAE to image P -to- S converted phases originating at the 410 and 660 km discontinuities beneath Afar. A transition zone thickness of 244 ± 19 km is obtained, similar to the global average transition zone thickness. This result suggests that any broad thermal anomaly beneath Afar probably does not extend as far down as the transition zone. However, because of the 19 km uncertainty in the thickness estimate, a small thermal anomaly of ~100–150 K at mantle transition zone depths cannot be ruled out.  相似文献   

13.
High-frequency body waves recorded by a temporary seismic array across the surface rupture trace of the 1992 Landers, California, earthquake were used to determine fault-zone structures down to the seismogenic depth. We first developed a technique to use generalized ray theory to compute synthetic seismograms for arbitrarily oriented tabular low-velocity fault-zone models. We then generated synthetic waveform record sections of a linear array across a vertical fault zone. They show that both arrival times and waveforms of P and S waves vary systematically across the fault due to transmissions and reflections from boundaries of the low-velocity fault zone. The waveform characteristics and arrival-time patterns in the record sections allow us to locate the boundaries of the fault zone and to determine its P - and S -wave velocities independently as well as its depth extent. Therefore, the trade-off between the fault-zone width and velocities can be avoided. Applying the method to the Landers waveform data reveals a low-velocity zone with a width of 270–360 m and a 35–60 per cent reduction in P and S velocities relative to the host rock. The analysis suggests that the low-velocity zone extends to a depth of ∼7 km. The western boundary of the low-velocity zone coincides with the observed main surface rupture trace.  相似文献   

14.
Small-scale elastic heterogeneities (<5  km) are found in the upper lithosphere underneath the Gräfenberg array, southeast Germany. The results are based on the analysis of broadband recordings of 17 intermediate-depth (201–272  km) events from the Hindu Kush region. The wavefront of the first P arrival and the following 40  s coda are separated into coherent and incoherent (scattered) parts in the frequency range from 0.05 to 5  Hz. The frequency-dependent intensities of the mean and fluctuation wavefields are used to describe the scattering characteristics of the lithosphere underneath the receivers. It is possible to discriminate a weak-fluctuation regime of the wavefield in the frequency range below approximately 1.5–2.5  Hz and a strong-fluctuation regime starting at 2.0–2.5  Hz and continuing to higher frequencies. In order to explain the observed wavefield fluctuations, an approach with seismic scattering at random media-type structures is proposed. The preferred model contains heterogeneities with 3–7 per cent perturbations in seismic velocity and correlation lengths of 0.6–4.8  km in the crust. This is compatible with models from active seismic experiments. Scattering in the lithospheric mantle is not required, but cannot be excluded at weak velocity contrasts (<3 per cent).  相似文献   

15.
In this study we image crustal structure beneath a magmatic continental rift to understand the interplay between crustal stretching and magmatism during the late stages of continental rifting: the Main Ethiopian Rift (MER). The northern sector of this region marks the transition from continental rifting in the East African Rift to incipient seafloor spreading in the southern Red Sea and western Gulf of Aden. Our local tomographic inversion exploits 172 broad-band instruments covering an area of 250 × 350 km of the rift and adjacent plateaux. The instruments recorded a total of 2139 local earthquakes over a 16-month period. Several synthetic tests show that resolution is good between 12 and 25 km depth (below sea level), but some horizontal velocity smearing is evident along the axis of the Main Ethiopian Rift below 16 km. We present a 3-D P -wave velocity model of the mid-crust and present the first 3-D Vp / Vs model of the region. Our models show high P -wave velocities (6.5 km s−1) beneath the axis of the rift at a depth of 12–25 km. The presence of high Vp / Vs ratios (1.81–1.84) at the same depth range suggest that they are cooled mafic intrusions. The high Vp / Vs values, along with other geophysical evidence, suggest that dyking is pervasive beneath the axis of the rift from the mid-crustal depths to the surface and that some portion of partial melt may exist at lower crustal depths. Although the crustal stretching factor across the Main Ethiopian Rift is ∼1.7, our results indicate that magma intrusion in narrow zones accommodates a large proportion of extensional strain, with similarities to slow-spreading mid-ocean ridge processes.  相似文献   

16.
The migration of teleseismic receiver functions yields high-resolution images of the crustal structure of western Crete. Data were collected during two field campaigns in 1996 and 1997 by networks of six and 47 short-period three-component seismic stations, respectively. A total of 1288 seismograms from 97 teleseismic events were restituted to true ground displacement within a period range from 0.5 to 7 s. The application of a noise-adaptive deconvolution filter and a new polarization analysis technique helped to overcome problems with local coda and noise conditions. The computation and migration of receiver functions results in images of local crustal structures with unprecedented spatial resolution for this region. The crust under Crete consists of a continental top layer of 15–20 km thickness above a 20–30 km thick subducted fossil accretionary wedge with a characteristic en echelon fault sequence. The downgoing oceanic Moho lies at a depth of 40–60 km and shows a topography or undulation with an amplitude of several kilometres. As a consequence of slab depth and distribution of local seismicity, the Mediterranean Ridge is interpreted as the recent accretionary wedge.  相似文献   

17.
Slab low-velocity layer in the eastern Aleutian subduction zone   总被引:1,自引:0,他引:1  
Local earthquakes in the vicinity of the Alaskan Peninsula's Shumagin Islands often produce arrivals between the main P and S arrivals not predicted by standard traveltime tables. Based on traveltime and polarization, these anomalous arrivals appear to be from P -to- S conversions at the surface of the subducted Pacific Plate beneath the recording stations. The P -to- S conversion occurs at the top of a low-velocity layer which extends to at least 150 km depth and is 8 ˜ 2 per cent slower than the overlying mantle. The slab is ˜ 7 per cent faster than the mantle. The low-velocity layer contains the foci of the earthquakes in the upper plane of the double seismic zone and confines PS ray paths to lie within it. These observations indicate that layered structures persist to positions well past the surface location of the volcanic front. Reactions forming high-pressure minerals do not yield slab-like velocities until beyond the point that subduction zone magma genesis occurs. If the subducted oceanic crust forms the layer, it is subducted essentially intact.  相似文献   

18.
Summary. The shear-wave velocity distribution in a spherically averaged Earth is estimated statistically from previously published short-period S travel-time measurements (Uhrhammer). An algorithm is defined for integral inversion techniques which allows estimation of the variance of the velocity distribution from the uncertainties in the S slowness model. Comparisons are made between the resulting S -velocity solution and other solutions in common use. There are significant differences (at the 95 per cent confidence level) between the 5-velocity model determined here and the Jeffreys-Bullen model over the depth ranges of 150–550 km and 2100–2350 km. The 95 per cent confidence level in the present velocity distribution ranges from ± 0.025 km/s at 625 km to ±0.32km/s at 2766 km and averages about ±0.063 or ±1 percent.
Correlations between azimuthally dependent source and station adjustments (which were previously determined (Uhrhammer)) indicate widespread lateral inhomogeneities (up to 3.4 per cent) to depths of approximately 700 km. Up to three-quarters of the source adjustments are due to lateral velocity variations in the source regions. Station adjustments for differential 5 minus P times are significantly correlated with elevation and crustal age, but not with station instrumental magnification.  相似文献   

19.
Five broad-band seismic stations were operated in the northwest fjords area of Iceland from 1996 to 1998 as part of the Iceland Hotspot project. The structures of the upper 35  km or so beneath these stations were determined by the modelling and joint inversion of receiver functions and regional surface wave phase velocities. More than 40 teleseismic events and a few regional events containing high-quality surface wave trains were used. Although the middle period passband of the seismograms is corrupted by oceanic microseismic noise, which hinders the interpretation of structural details, the inversions reveal the overall features. Many profiles obtained exhibit large velocity gradients in the upper 5  km or so, smaller zero gradients below this, and, at ~23  km depth, a zone 2–4  km thick with higher velocity gradients. The two shallower intervals are fairly consistent with the 'upper' and 'lower' crust, defined by Flovenz (1980 ). The deep zone of enhanced velocity gradient seems to correspond to the sharp reflector first reported by Bjarnason et al . (1993 ) and identified by them as the 'Moho'. However, this type of structure is not ubiquitous beneath the northwest fjords area. The distinctiveness of the three intervals is variable, and in some cases a structure with velocity gradient increasing smoothly with depth is observed. We term these two end-members structures of the first and second types respectively. Structures of the second type correlate with older areas. Substantial variation in fundamental structure is to be expected in Iceland because of the great geological heterogeneity there.  相似文献   

20.
According to recent estimates, the continental mid-crust contains 35–40 per cent amphibolites. Heating of the crust by an underlying mantle plume, for example beneath continental rifts, high plateaus, and areas of intraplate volcanic activity, releases water. Dehydration of amphibole-bearing rocks at depths of 20–40  km occurs mainly in the temperature range 650–700 °C, and this releases about 0.4  wt per cent of water.
  Seismic tomography studies of the crust in the Kirgyz Tien Shan Range, where the age of the tectonic activity is less than 30  Ma, revealed a low-velocity zone in the mid-crust. The velocity of P waves was 0.4  km  s1 lower than in normal crust. MT sounding data in the region show the existence of a low-resistivity layer with an average resistivity of about 25  Ω  m at the depth of the low-velocity layer. The spatial correlation of the observed anomalous layers and calculated effect of fluid phase on seismic and electric parameters of rocks suggests the presence of aqueous fluids released by the heating of the mid-crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号