首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out-of-eclipse data were used for this study. The 3–25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.  相似文献   

2.
We investigated the optical, X-ray, and gamma-ray variability of the pulsar SAX J2103.5+4545. Our timing and spectral analyses of the X-ray and gamma-ray emissions from the source using RXTE and INTEGRAL data show that the shape of its spectrum in the energy range 3–100 keV is virtually independent of its intensity and the orbital phase. Based on XMM-Newton data, we accurately (5″) localized the object and determined the optical counterpart in the binary. We placed upper limits on the variability of the latter in the Hα line on time scales of the orbital and pulse periods, respectively.  相似文献   

3.
We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626–67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3σ upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb-Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.  相似文献   

4.
The outburst of X-ray transient source XTE J2012+381 was detected by the RXTE All-Sky Monitor on 1998 May 24th. Following the outburst, X-ray observations of the source were made in the 2–18 keV energy band with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment (IXAE) on-board the Indian satellite IRS-P3 during 1998 June 2nd–10th. The X-ray flux of the source in the main outburst decreased exponentially during the period of observation. No large amplitude short-term variability in the intensity is detected from the source. The power density spectrum obtained from the timing analysis of the data shows no indication of any quasi-periodic oscillations in 0.002–0.5 Hz band. The hardness ratio i.e. the ratio of counts in 6–18 keV to 2–6 keV band, indicates that the X-ray spectrum is soft with spectral index >2. From the similarities of the X-ray properties with those of other black hole transients, we conclude that the X-ray transient XTE J2012+381 is likely to be a black hole.  相似文献   

5.
The X-ray binary system GX 301−2 consists of a neutron star in an eccentric orbit accreting from the massive early-type star Wray 977. It has previously been shown that the X-ray orbital light curve is consistent with the existence of a gas stream flowing out from Wray 977 in addition to its strong stellar wind. Here, X-ray monitoring observations by the Rossi X-ray Timing Explorer ( RXTE )/All-Sky Monitor and pointed observations by the RXTE /Proportional Counter Array over the past decade are analysed. We analyse both the flux and column density dependence on orbital phase. The wind and stream dynamics are calculated for various system inclinations, companion rotation rates and wind velocities, as well as parametrized by the stream width and density. These calculations are used as inputs to determine both the expected accretion luminosity and the column density along the line-of-sight to the neutron star. The model luminosity and column density are compared to observed flux and column density versus orbital phase, to constrain the properties of the stellar wind and the gas stream. We find that the change between bright and medium intensity levels is primarily due to decreased mass loss in the stellar wind, but the change between medium and dim intensity levels is primarily due to decreased stream density. The mass-loss rate in the stream exceeds that in the stellar wind by a factor of ∼2.5. The quality of the model fits is better for lower inclinations, favouring a higher mass for Wray 977 in its allowed range of  40–60 M  .  相似文献   

6.
Here we report the spectral characteristics of the high and low states of the pulsar 4U 0114 + 65 and examine the change in the parameters of the spectral model. A power law and a photoelectric absorption by material along the line of sight together with a high energy cut-off suffice to describe the continuum spectrum in both the states. A fluorescence iron line at ∼6.4 keV is present in the high as well as in the low state, though it is less intense in the latter. The photon index, cut-off energy and e-folding energy values hardly show any discernible change over the states. We compare these spectral characteristics as observed with ASCA with those of other satellites. We also compare the spectral characteristics of 4U 0114 + 650 with other X-ray sources which show intensity variation at different time scales.  相似文献   

7.
The defining property of Soft Gamma Repeaters is the emission of short, bright bursts of X-rays and soft γ-rays. Here we present the continuum and line spectral properties of a large sample of bursts from SGR 1806-20, observed with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE). Using 10 trail spectral models (5 single and 5 two component models), we find that the burst continua are best fitted by the single component models: cutoff power-law, optically thin bremsstrahlung, and simple power-law. Time resolved spectroscopy show that there are two absorption lines at ∼5 keV and 20 keV in some bursts. The lines are relatively narrow with 90% upper limit on the line widths of 0.5–1.5 keV for the 5 keV feature and 1–3 keV for the 20 keV feature. Both lines have considerable equivalent width of 330–850 eV for the 5 keV feature and 780–2590 eV for the 20 keV feature. We examined whether theses spectral lines are dependent upon the choice of a particular continuum model and find no such dependence. Besides, we find that the 5 keV feature is pronounced with high confidence in the cumulative joint spectrum of the entire burst sample, both in the individual detectors of the PCA and in the co-added detectors spectrum. We confront the features against possible instrumental effects and find that none can account for the observed line properties. The two features do not seem to be connected to the same physical mechanism because (1) they do not always occur simultaneously, (2) while the 5 keV feature occurs at about the same energy, the 20 keV line centroid varies significantly from burst to burst over the range 18–22 keV, and (3) the centroid of the lines shows anti-correlated red/blue shifts. The transient appearance of the features in the individual bursts and in portions of the same burst, together with the spectral evolution seen in some bursts point to a complex emission mechanism that requires further investigation.   相似文献   

8.
We have investigated with BeppoSAX the long term behaviour of the harder X-ray component of the supposed supermassive binary system η Car along its 5.52 year cycle. We have found that in March 1998 during egress from the last December 1997 eclipse, this component was the same as outside eclipse, but for a large (×3.5) increase of NH h , that can be attributed to the presence or formation of opaque matter in front of the source near periastron. Unexpectedly, at that time the iron 6.7 keV emission line was 40% stronger. BeppoSAX has for the first time found ahard X-ray tail extending to at least 50 keV, that cannot be adequately fitted with an additional hotter thermal component. The 2–100 keV spectrum of η Car is instead well fitted with an absorbed powerlaw spectrum with photon index 2.53, suggesting non-thermal emission as an alternative model for the core source.  相似文献   

9.
We present new X-ray observations of the high-mass X-ray binary (HMXRB) pulsar OAO 1657−415, obtained during one orbital period (10.44 d) with the Rossi X-Ray Timing Explorer ( RXTE ). Using the binary orbital parameters, obtained from Burst and Transient Source Experiment (BATSE) observations, we resolve the fluctuations in the pulse frequency at time-scales on the order of 1 d for the first time. Recent BATSE results by Baykal showed that OAO 1657−415 has spin-up/down trends in its pulse frequency time series, without any correlation with the X-ray luminosity at energies >20 keV. In the present RXTE observations the source is found to be in an extended phase of spin-down. We also find a gradual increase in the X-ray luminosity which is correlated with a marginal spin-up episode. The marginal correlation between the gradual spin-up (or decrease in spin-down rate) and increase in X-ray luminosity suggests that OAO 1657−415 is observed during a stable accretion episode where the prograde accretion disc is formed.  相似文献   

10.
We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer ( RXTE ) since 1999 January. During late 2000 and early 2001 we observed an unusual hardening of the 2–10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 × 1023 cm−2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM–Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionized. The XMM–Newton spectrum also shows that ∼10 per cent of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on the cloud ionization parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be   R ∼ 10–100  light-days from the central X-ray source, and its density to be   n H∼ 108 cm−3  , implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.  相似文献   

11.
A model of a young binary system with companions of unequal mass whose orbital plane is inclined at a large angle to the line of sight is examined. The system components are assumed to accrete matter from the remains of the protostellar cloud. It is found that eclipsing of the primary component by the disk wind of the secondary can be observed when the plane of the orbit is inclined at a large angle to the line of sight or even when the binary system is observed pole-on. __________ Translated from Astrofizika, Vol. 51, No. 2, pp. 267–275 (May 2008).  相似文献   

12.
We have used the RXTE and INTEGRAL satellites simultaneously to observe the high-mass X-ray binary (HMXB) IGR J19140+0951. The spectra obtained in the 3–80 keV range have allowed us to perform a precise spectral analysis of the system along its binary orbit. The spectral evolution confirms the supergiant nature of the companion star and the neutron star nature of the compact object. Using a simple stellar wind model to describe the evolution of the photoelectric absorption, we were able to restrict the orbital inclination angle in the range 38°–75°. This analysis leads to a wind mass-loss rate from the companion star of  ∼5 × 10−8 M yr−1  , consistent with an OB I spectral type. We have detected a soft excess in at least four observations, for the first time for this source. Such soft excesses have been reported in several HMXBs in the past. We discuss the possible origin of this excess, and suggest, based on its spectral properties and occurrences around the superior conjunction, that it may be explained as the reprocessing of the X-ray emission originating from the neutron star by the surrounding ionized gas.  相似文献   

13.
We present the results of a detailed analysis of RXTE observations of classω (Klein-Woltet al. 2002) which show an unusual state transition between high-soft and low-soft states in the Galactic microquasar GRS 1915 + 105. Out of about 600 pointed RXTE observations, the source was found to exhibit such state transition only on 16 occasions. An examination of the RXTE/ASM data in conjunction with the pointed observations reveals that these events appeared as a series of quasi-regular dips in two stretches of long duration (about 20 days during each occasion) when hard X-ray and radio flux were very low. The X-ray light curve and colour-colour diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ in intensity by a factor of ∼ 3.5, is observed to be very fast (∼ a few seconds). It is observed that the low-frequency narrow QPOs are absent in the power density spectrum (PDS) of the dip and non-dip regions of classω and the PDS is a power law in the 0.1–10 Hz frequency range. There is a remarkable similarity in the spectral and timing properties of the source during the dip and non-dip regions in this set of observations. These properties of the source are distinctly different from those seen in the observations of other classes. This indicates that the basic accretion disk structure during both dip and non-dip regions of classω is similar, but differ only in intensity. To explain these observations, we invoke a model in which the viscosity is very close to critical viscosity and the shock wave is weak or absent.  相似文献   

14.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

15.
We report the discovery of type I X-ray bursts from the low-mass X-ray binary  4U 1708 − 40  during the 100-ks observation performed by BeppoSAX on 1999 August 15–16. Six X-ray bursts have been observed. The unabsorbed 2–10 keV fluxes of the bursts range from ∼3 to  9 × 10−10 erg cm−2 s−1  . A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate     , which may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of  4U 1708 − 40  , where no bursts have been observed; we find persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts.  相似文献   

16.
During the past decade, several observational and theoretical works have provided evidence of the binary nature of η Carinae. Nevertheless, there is still no direct determination of the orbital parameters, and the different current models give contradictory results. The orbit is, in general, assumed to coincide with the Homunculus equator although the observations are not conclusive. Among all systems, η Car has the advantage that it is possible to observe both the direct emission of line transitions in the central source and its reflection by the Homunculus, which is dependent on the orbital inclination. In this work, we studied the orbital phase-dependent hydrogen Paschen spectra reflected by the south-east lobe of the Homunculus to constrain the orbital parameters of η Car and determine its inclination with respect to the Homunculus axis. Assuming that the emission excess originates in the wind–wind shock region, we were able to model the latitude dependence of the spectral line profiles. For the first time, we were able to estimate the orbital inclination of η Car with respect to the observer and to the Homunculus axis. The best fit occurs for an orbital inclination to the line of sight of   i ∼ 60°± 10°  , and   i *∼ 35°± 10°  with respect to the Homunculus axis, indicating that the angular momenta of the central object and the orbit are not aligned. We were also able to fix the phase angle of conjunction as  ∼−40°  , showing that periastron passage occurs shortly after conjunction.  相似文献   

17.
On 2006 August 30, SXP18.3 a high-mass X-ray binary (HMXB) in the Small Magellanic Cloud (SMC) with an 18.3 s pulse period was observed by Rossi X-ray Timing Explorer ( RXTE ). The source was seen continuously for the following 36 weeks. This is the longest type II outburst ever seen from a HMXB in the SMC. During the outburst, SXP18.3 was located from serendipitous XMM–Newton observations. The identification of the optical counterpart has allowed SXP18.3 to be classified as a Be/X-ray binary. This paper will report on the analysis of the optical and weekly RXTE X-ray data that span the last 10 yr. The extreme length of this outburst has for the first time enabled us to perform an extensive study of the pulse timing of a SMC Be/X-ray binary. We present a possible full orbital solution from the pulse timing data. An orbital period of 17.79 d is proposed from the analysis of the Optical Gravitational Lensing Experiment (OGLE) III light curve placing SXP18.3 on the boundary of known sources in the Corbet diagram.  相似文献   

18.
We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4-3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10−12 s s−1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4-3658 will help us to resolve this.  相似文献   

19.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

20.
A 6.4 keV emission line was discovered in an unusual burst from the soft gamma repeater SGR 1900+14 with the Rossi X-ray Timing Explorer (RXTE). The line was detected in part of a complex multipeak precursor that preceded the unusual burst of 1998 August 29, i.e. two days after the giant flare of August 27 from the source. The origin of the line was not firmly identified and two possible interpretations were equally plausible including (a) Kα fluorescence from a small iron rich material that was ejected to the magnetosphere during the August 27 flare, and (b) proton or α-particle cyclotron resonance. If the iron scenario was correct, we expect to find evidence for the line during the intervening interval between the flare and the August 29 burst, i.e. on August 28. Here we present the results of the August 28 burst observation, taken with RXTE. We detect a total of seven bursts whose individual and joint spectra do not show evidence for spectral lines. We also investigated a sample of nine bursts before and after the August 29 burst (from 1998 June to December) that do not reveal evidence for a spectral line near 6.4 keV or elsewhere. These results disfavor the iron scenario and make the proton/α-particle cyclotron resonance interpretation more plausible. The appearance of the emission line in part of a complex burst and its absence from the studied sample indicate that the line is likely due to a transient phenomenon that may depend on the burst morphology, energetics and the properties of the emission region.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号