首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Some effects of a bar on stellar orbits and on chemical gradients are presented for spiral galaxies in general and for the Solar Neighborhood in particular. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We consider a differentially rotating, 2D stellar disc perturbed by two steady-state spiral density waves moving at different pattern speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time-dependent gravitational field can be heated (their random motions increased). This is particularly noticeable in the simultaneous propagation of a two-armed spiral density wave near the corotation resonance (CR), and a weak four-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with two spiral waves moving at different pattern speeds, we find: (i) the variance of the radial velocity,  σ2 R   , exceeds the sum of the variances measured from simulations with each individual pattern; (ii)  σ2 R   can grow with time throughout the entire simulation; (iii)  σ2 R   is increased over a wider range of radii compared to that seen with one spiral pattern; and (iv) particles diffuse radially in real space, whereas they do not when only one spiral density wave is present. Near the CR with the stronger, two-armed pattern, test-particles are observed to migrate radially. These effects take place at or near resonances of both spirals, so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic discs. If multiple spiral patterns are present in the Galaxy, we predict that there should be large variations in the stellar velocity dispersion as a function of radius.  相似文献   

3.
We investigate regions near the ends of the principal spiral arms in SB galaxies, where the non-axially symmetric part of the gravitational potential rapidly transforms to its asymptotic quadrupole form. The galactic disk responds to this transformation of the potential by forming nearly circular spirals with an angular extent of the order of π/2 (quarter-turn spirals). We consider the resonance mechanism for the formation of principal spirals. Expressions are derived for the resonance responses of disks with circular and nearly circular stellar orbits.  相似文献   

4.
The spiral galaxy NGC 3521 exhibits apparently normal kinematic properties of gas and stars along its major axis. However, the analysis of the LOSVD reveals strong asymmetries. A decomposition of the LOSVD data with a two-Gaussian component model shows two counter-rotating stellar components. The observed kinematic decoupling is interpreted as a projection effect induced by the presence of a bar component seen almost end on. The bar produces locally a greater concentration of retrograde stellar orbits but this does not relate to a specific counter-rotating population. The signatures of the bar are identified in the velocity field derived from long-slit spectra obtained along the major, minor and 45° intermediate axes and from R-band surface photometry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
6.
This paper considers the formation of stellar galactic structures, which are assumed to be slow modes in a disc of orbits precessing at different speeds. The mode pattern speeds, Ωp, are eigen-values of a Fredholm integral operator. Its general analysis shows the existence of two types of eigen-functions, bar-like and spiral. The bars grow through the immediate action of mode gravitational fields on the stars near the corotation and the outer Lindblad resonance. The excitation of spirals is due to the inner Lindblad resonance. Apparently, the commonly used swing amplification mechanism does not play any role in the formation of both bar-modes and grand design spiral modes. However, it can be essential in the formation of transient excitations when the normal global mode cannot be organized. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A new method for selecting stars in the Galactic bar based on 2MASS infrared photometry in combination with stellar proper motions from the Kharkiv XPM catalogue has been implemented. In accordance with this method, red clump and red giant branch stars are preselected on the color-magnitude diagram and their photometric distances are calculated. Since the stellar proper motions are indicators of a larger velocity dispersion toward the bar and the spiral arms compared to the stars with circular orbits, applying the constraints on the proper motions of the preselected stars that take into account the Galactic rotation has allowed the background stars to be eliminated. Based on a joint analysis of the velocities of the selected stars and their distribution on the Galactic plane, we have confidently identified the segment of the Galactic bar nearest to the Sun with an orientation of 20°–25° with respect to the Galactic center-Sun direction and a semimajor axis of no more than 3 kpc.  相似文献   

8.
The motion of a black hole about the centre of gravity of its host galaxy induces a strong response from the surrounding stellar population. We treat the case of a harmonic potential analytically and show that half of the stars on circular orbits in that potential shift to an orbit of lower energy, while the other half receive a positive boost and recede to a larger radius. The black hole itself remains on an orbit of fixed amplitude and merely acts as a catalyst for the evolution of the stellar energy distribution function f ( E ). We show that this effect is operative out to a radius of approximately three to four times the hole's influence radius, R bh. We use numerical integration to explore more fully the response of a stellar distribution to black hole motion. We consider orbits in a logarithmic potential and compare the response of stars on circular orbits, to the situation of a 'warm' and 'hot' (isotropic) stellar velocity field. While features seen in density maps are now wiped out, the kinematic signature of black hole motion still imprints the stellar line-of-sight mean velocity to a magnitude ≃13 per cent the local rms velocity dispersion σ. A study in three dimensions suggests a reduced effect for polar orbits.  相似文献   

9.
We study the role of asymptotic curves in supporting the spiral structure of a N-body model simulating a barred spiral galaxy. Chaotic orbits with initial conditions on the unstable asymptotic manifolds of the main unstable periodic orbits follow the shape of the periodic orbits for an initial interval of time and then they are diffused outwards along the spiral structure of the galaxy. Chaotic orbits having small deviations from the unstable periodic orbits, stay close and along the corresponding unstable asymptotic manifolds, supporting the spiral structure for more than 10 rotations of the bar. Chaotic orbits of different Jacobi constants support different parts of the spiral structure. We also study the diffusion rate of chaotic orbits outwards and find that the orbits that support the outer parts of the galaxy are diffused outwards more slowly than the orbits supporting the inner parts of the spiral structure.  相似文献   

10.
We study the various approximations used to investigate the eigenmode spectrum for systems with highly elongated stellar orbits. The approximation in which the elongated orbits are represented by thin rotating spokes, with the rotation imitating the precession of real orbits, is the simplest and most natural one. However, we show that using this pictorial approximation does not allow the picture of stability to be properly presented. We show that for stellar systems with a plane disk geometry, this approach does not allow unstable spectral modes to be obtained even in the leading order in small parameter, which characterizes the spread of nearly radial orbits in angular momentum. For spherical systems, where the situation is more favorable, the spectrum can be determined but only in the leading order in this parameter. A rigorous approach based on the solution of more complex integral equations given here should be used to properly investigate the stability of stellar systems.  相似文献   

11.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

12.
As a first step towards a comprehensive investigation of stellar motions within globular clusters, we present here the results of a study of stellar orbits in a mildly triaxial globular cluster that follows a circular orbit inside a galaxy. The stellar orbits were classified using the frequency analysis code of Carpintero and Aguilar and, as a check, the Liapunov characteristic exponents were also computed in some cases. The orbit families were obtained using different start spaces. Chaotic orbits turn out to be very common and while, as could be expected, they are particularly abundant in the outer parts of the cluster, they are still significant in the innermost regions. Their relevance for the structure of the cluster is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
The instability of anisotropic disk systems with elongated stellar orbits has been investigated. N-body generalized polytropic models of stellar disks have been constructed. They are shown to be unstable with respect to the bar formation at any degree of anisotropy. This result differs from the results of the studies of such models by other authors. The bar pattern speed and amplitude have been found. The initial distribution of precession rates and the adiabatic invariants of stellar orbits have been calculated. A bar is shown to be formed in such systems due to the radial orbit instability.  相似文献   

15.
Recent results on periodic orbits are presented and it is shown that the periodic orbits can be used in the study of planetary systems and triple or multiple stellar systems. Triple stellar systems are stable even for close approaches of the three components. Also stable triple systems exist with nearly zero angular momentum. For the planetary systems a global view is obtained from which it is clear which configurations are stable or unstable and also what factors affect the stability. Also, the relation between resonance and instability is studied by making use of periodic orbits.  相似文献   

16.
Using multi-band photometric images of M51 and its companion NGC 5195 from ultraviolet to optical and infrared,we investigate spatially resolved stellar population properties of this interacting system with stellar population synthesis models.The observed infrared excess(IRX)is used to constrain dust extinction.Stellar mass is also inferred from the model fitting.By fitting observed spectral energy distributions(SEDs)with synthetical ones,we derive two-dimensional distributions of stellar age,metallicity,dust extinction and stellar mass.In M51,two grand-designed spiral arms extending from the bulge show young age,rich metallicity and abundant dust.The inter-arm regions are filled with older,metalpoorer and less dusty stellar populations.Except for the spiral arm extending from M51 into NGC 5195,the stellar population properties of NGC 5195 are quite featureless.NGC 5195 is much older than M51,and its core is very dusty with AV up to 1.67 mag and dense in stellar mass surface density.The close encounters might drive the dust in the spiral arm of M51 into the center of NGC 5195.  相似文献   

17.
We investigate the potential importance of molecular cloud and stellar perturbations on the orbits of Pluto and more distant (hypothetical) planets up to 500 AU from the Sun. It is found that stellar and molecular cloud-core perturbations are of roughly equal importance. It also is found that the likelihood of substantial perturbations on Pluto is not insignificant, and that numerous substantial stellar and molecular cloud perturbations are likely to have influenced the orbits of any planets beyond 200 AU. These perturbations may contribute to a prevalence of moderate eccentricities and inclinations for planets beyond the orbit of Neptune, and may be a characteristic of distant planetary orbits in other solar systems. Given the recent discovery of chaotic behavior in Pluto's orbit (Sussman and Wisdom 1988), the effects of external perturbations on the long-term stability of Pluto's orbit warrant continued study.  相似文献   

18.
The convergence of Lagrange series is studied on a part of the elliptical orbit for values of eccentricity exceeding the Laplace limit. The regions in the vicinity of the two apses of the orbit are identified in which the Lagrange series converge absolutely and uniformly for the values of the eccentricity greater than the Laplace limit. The obtained results are of practical interest for astronomy when studying motions of stellar bodies in orbits with high eccentricity. In particular, these series may be used to calculate the orbits of comets or asteroids with high eccentricity as they pass through the neighborhood of perihelion or to calculate the orbits of artificial satellites with high eccentricity “hanging” in the vicinity of apogee. In stellar dynamics, these series may be used in cases of close binary stars, many of which move in orbits with an eccentricity greater than the Laplace limit.  相似文献   

19.
Using a consistent perturbation theory for collisionless disk-like and spherical star clusters, we construct a theory of slow modes for systems having an extended central region with a nearly harmonic potential due to the presence of a fairly homogeneous (on the scales of the stellar system) heavy, dynamically passive halo. In such systems, the stellar orbits are slowly precessing, centrally symmetric ellipses (2: 1 orbits). We consider star clusters with monoenergetic distribution functions that monotonically increase with angular momentum in the entire range of angular momenta (from purely radial orbits to circular ones) or have a growing region only at low angular momenta. In these cases, there are orbits with a retrograde precession, i.e., in a direction opposite to the orbital rotation of the star. The presence of a gravitational loss-cone instability, which is also observed in systems of 1: 1 orbits in near-Keplerian potentials, is associated with such orbits. In contrast to 1: 1 systems, the loss-cone instability takes place even for distribution functions monotonically increasing with angular momentum, including those for systems with circular orbits. The regions of phase space with retrograde orbits do not disappear when the distribution function is smeared in energy. We investigate the influence of a weak inhomogeneity of a heavy halo with a density that decreases with distance from the center.  相似文献   

20.
Improved formulas of impulse approximation method for stellar perturbations are derived. The method proposed involves a deflection of the stellar path. It is also applicable to an arbitrary time interval. A comparison of the classical vs improved method is presented both in qualitative discussion and numerical results for Oort cloud cometary orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号