首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compression behavior of a synthetic Ca4La6(SiO4)6(OH)2 has been investigated to about 9.33 GPa at 300 K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell. No phase transition has been observed within the pressure range investigated. The values of zero-pressure volume V 0, K 0, and $K_{0}^{'}$ refined with a third-order Birch–Murnaghan equation of state are V 0 = 579.2 ± 0.1 Å3, K 0 = 89 ± 2 GPa, and $K_{0}^{'} = 10.9 \pm 0.8$ . If $K_{0}^{'}$ is fixed at 4, K 0 is obtained as 110 ± 2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a0 = 79 ± 2 GPa) is more compressible than the c-axis (K c0 = 121 ± 7 GPa). A comparison between the high-pressure elastic response of Ca4La6(SiO4)6(OH)2 and the iso-structural calcium apatites is made. The possible reasons of the different elastic behavior between Ca4La6(SiO4)6(OH)2 and calcium apatites are discussed.  相似文献   

2.
Diagenetic alunite occurs with calcrete, gypcrete and silcrete deposits in a Mio-Pleistocene clastic sequence at several locations in southern Kuwait, Arabian Gulf. Based on their physical properties and textural characteristics the alunite deposits were divided into (1) chalky quartzitic alunite, (2) chalky quartz-free alunite, (3) hard pink alunitic sandstone. The chalky alunite is composed mainly of hydronium-alunite (H3O)Al3(SO4)2(OH)6, while the hard pink alunite is composed solely of well developed potassium alunite KAl3(SO4)2(OH)6. These minerals resulted from the action of sulphuric acid on clays and K-feldspars in the muddy sandstone and mudstone host sediments. The sulphuric acid is most probably produced by the oxidation of hydrogen sulphide that might have seeped in from the oil fields of this area. Four diagenetic stages are suggested for the genesis of the studied alunites: gypsification, sulphuratization, silicification and alunitization. In oil field areas, the occurrences of alunite would serve as an indicator for the presence at depth of hydrocarbons.  相似文献   

3.
The adiabatic single-crystal elastic moduli of superhydrous B, Mg10Si3O14(OH)4, have been measured at ambient conditions using Brillouin spectroscopy. This material is the first hydrous phase found to be stable at the extreme conditions of 20 GPa and 1400 °C. The single-crystal moduli, in GPa, are: C 11=280.0±1.5, C 22=307.4±1.6, C 33=293.4±1.4, C 44=90.0±1.1, C 55=99.2±0.8, C 66=89.6±0.6, C 12=66.1±2.2, C 13=105.6±2.6, C 23=81.8±2.6. With aggregate elastic properties of K VRH =154.0±4.2 and μ VRH =97.0±0.7 GPa, superhydrous B is approximately 16% suffer than forsterite and 20% softer than magnesium silicate spinel; it is also considerably more elastically isotropic than forsterite. The single-crystal moduli are compared to those of forsterite, magnesium silicate spinel and periclase, materials that are both structurally and compositionally similar to superhydrous B. The longitudinal moduli of superhydrous B and forsterite follow similar trends and appear to be dominated by the incompressibility and rotation of silicon tetrahedra. The shear and off-diagonal moduli more closely resemble those of periclase and spinel and may reflect the properties inherent to layers of magnesium octahedra.  相似文献   

4.
The behavior of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), has been investigated by means of in situ single-crystal synchrotron X-ray diffraction up to 45 GPa. No phase transition or change in the compressional regime has been observed within the pressure-range investigated. The compressional behavior was described with a third-order Birch–Murnaghan equation of state (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are as follows: K V = 158(4) GPa and K V  = 3.3(3). The confidence ellipse at 68.3 % (Δχ2 = 2.30, 1σ) was calculated starting from the variance–covariance matrix of K V and K′ obtained from the III-BM-EoS least-square procedure. The ellipse is elongated with a negative slope, indicating a negative correlation of the parameters K V and K V , with K V = 158 ± 6 GPa and K V  = 3.3 ± 4. A linearized III-BM-EoS was used to obtain the axial-EoS parameters (at room-P), yielding: K(a) = 146(5) GPa [β a = 1/(3K(a)) = 0.00228(6) GPa?1] and K′(a) = 4.6(3) for the a-axis; K(b) = 220(4) GPa [β b = 0.00152(4) GPa?1] and K′(b) = 2.6(3) for the b-axis; K(c) = 132(4) GPa [β c = 0.00252(7) GPa?1] and K′(c) = 3.3(3) for the c-axis. The elastic anisotropy of topaz at room-P can be expressed as: K(a):K(b):K(c) = 1.10:1.67:1.00 (β a:β b:β c = 1.50:1.00:1.66). A series of structure refinements have been performed based on the intensity data collected at high pressure, showing that the P-induced structure evolution at the atomic scale is mainly represented by polyhedral compression along with inter-polyhedral tilting. A comparative analysis of the elastic behavior and P/T-stability of topaz polymorphs and “phase egg” (i.e., AlSiO3OH) is carried out.  相似文献   

5.
The structural evolution at high pressure of a natural 2M 1-phengite [(K0.98Na0.02)Σ=1.00(Al1.55Mg0.24Fe0.21Ti0.02)Σ=2.01(Si3.38Al0.62)O10(OH)2; a = 5.228(2), b = 9.057(3), c = 19.971(6)Å, β = 95.76(2)°; space group: C2/c] from the metamorphic complex of Cima Pal (Sesia Zone, Western Alps, Italy) was studied by single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions up to ~11 GPa. A series of 12 structure refinements were performed at selected pressures within the P range investigated. The compressional behaviour of the same phengite sample was previously studied up to ~25 GPa by synchrotron X-ray powder diffraction, showing an irreversible transformation with a drastic decrease of the crystallinity at P > 15–17 GPa. The elastic behaviour between 0.0001 and 17 GPa was modelled by a third-order Birch–Murnaghan Equation of State (BM-EoS), yielding to K T0 = 57.3(10) GPa and K′ = ?K T0/?P = 6.97(24). The single-crystal structure refinements showed that the significant elastic anisotropy of the 2M 1-phengite (with β(a):β(b):β(c) = 1:1.17:4.60) is mainly controlled by the anisotropic compression of the K-polyhedra. The evolution of the volume of the inter-layer K-polyhedron as a function of P shows a negative slope, Fitting the PV(K-polyhedron) data with a truncated second-order BM-EoS we obtain a bulk modulus value of K T0(K-polyhedron) = 26(1) GPa. Tetrahedra and octahedra are significantly stiffer than the K-polyhedron. Tetrahedra behave as quasi-rigid units within the P range investigated. In contrast, a monotonic decrease is observed for the octahedron volume, with K T0 = 120(10) GPa derived by a BM-EoS. The anisotropic response to pressure of the K-polyhedron affects the P-induced deformation mechanism on the tetrahedral sheet, consisting in a cooperative rotation of the tetrahedra and producing a significant ditrigonalization of the six-membered rings. The volume of the K-polyhedron and the value of the ditrigonal rotation parameter (α) show a high negative correlation (about 93%), though a slight discontinuity is observed at P >8 GPa. α increases linearly with P up to 7–8 GPa (with ?α/?P ≈ 0.7°/GPa), whereas at higher Ps a “saturation plateau” is visible. A comparison between the main deformation mechanisms as a function of pressure observed in 2M 1- and 3T-phengite is discussed.  相似文献   

6.
In situ high-pressure investigations on norsethite, BaMg(CO3)2, have been performed in sequence of diamond-anvil cell experiments by means of single-crystal X-ray and synchrotron diffraction and Raman spectroscopy. Isothermal hydrostatic compression at room temperature yields a high-pressure phase transition at P c ≈ 2.32 ± 0.04 GPa, which is weakly first order in character and reveals significant elastic softening of the high-pressure form of norsethite. X-ray structure determination reveals C2/c symmetry (Z = 4; a = 8.6522(14) Å, b = 4.9774(13) Å, c = 11.1542(9) Å, β = 104.928(8)°, V = 464.20(12) Å3 at 3.00 GPa), and the structure refinement (R 1 = 0.0763) confirms a distorted, but topologically similar crystal structure of the so-called γ-norsethite, with Ba in 12-fold and Mg in octahedral coordination. The CO3 groups were found to get tilted off the ab-plane direction by ~16.5°. Positional shifts, in particular of the Ba atoms and the three crystallographically independent oxygen sites, give a higher flexibility for atomic displacements, from which both the relatively higher compressibility and the remarkable softening originate. The corresponding bulk moduli are K 0 = 66.2 ± 2.3 GPa and dK/dP = 2.0 ± 1.8 for α-norsethite and K 0 = 41.9 ± 0.4 GPa and dK/dP = 6.1 ± 0.3 for γ-norsethite, displaying a pronounced directional anisotropy (α: β a ?1  = 444(53) GPa, β c ?1  = 76(2) GPa; γ: β a ?1  = 5.1(1.3) × 103 GPa, β b ?1  = 193(6) GPa β c ?1  = 53.4(0.4) GPa). High-pressure Raman spectra show a significant splitting of several modes, which were used to identify the transformation in high-pressure high-temperature experiments in the range up to 4 GPa and 542 K. Based on the experimental series of data points determined by XRD and Raman measurements, the phase boundary of the α-to-γ-transition was determined with a Clausius–Clapeyron slope of 9.8(7) × 10?3 GPa K?1. An in situ measurement of the X-ray intensities was taken at 1.5 GPa and 411 K in order to identify the nature of the structural variation on increased temperatures corresponding to the previously reported transformation from α- to β-norsethite at 343 K and 1 bar. The investigations revealed, in contrast to all X-ray diffraction data recorded at 298 K, the disappearance of the superstructure reflections and the observed reflection conditions confirm the anticipated \(R\bar{3}m\) space-group symmetry. The same superstructure reflections, which disappear as temperature increases, were found to gain in intensity due to the positional shift of the Ba atoms in the γ-phase.  相似文献   

7.
In order to examine pressure–volume–temperature (PVT) relations for CaSiO3 perovskite (Ca-perovskite), high-temperature compression experiments with in situ X-ray diffraction were performed in a laser-heated diamond anvil cell (DAC) to 127 GPa and 2,300 K. We also employed an external heating system in the DAC in order to obtain PV data at a moderate temperature of 700 K up to 113 GPa, which is the reference temperature for constructing an equation of state. The PV data at 700 K were fitted to the second-order Birch–Murnaghan equation of state, yielding K 700,1bar = 207 ± 4 GPa and V 700,1bar = 46.5 ± 0.1 Å3. Thermal pressure terms were evaluated in the framework of the Mie–Grüneisen–Debye model, yielding γ 700,1bar = 2.7 ± 0.3, q 700,1bar = 1.2 ± 0.8, and θ 700,1bar = 1,300 ± 500 K. A thermodynamic thermal pressure model was also employed, yielding α700,1bar = 5.7 ± 0.5 × 10?5/K and (?K/?T) V  = ?0.010 ± 0.004 GPa/K. Computed densities along a lower mantle geotherm demonstrate that Ca-perovskite is denser than the surrounding lower mantle, suggesting that Ca-perovskite-rich rocks do not rise up through the lower mantle. One of such rocks might be a residue of partial melting of subducted mid-oceanic ridge basalt (MORB) at the base of the mantle. Since the partial melt is FeO-rich and therefore denser than the mantle, all the components of subducted MORB may not return to shallow levels.  相似文献   

8.
The crystal structure of a natural triclinic talc (1Tc polytype) [with composition: (Mg2.93Fe0.06)Σ2.99(Al0.02Si3.97)Σ3.99O10(OH)2.10] has been investigated by single-crystal X-ray diffraction at 223 and 170 K and by single-crystal neutron diffraction at 20 K. Both the anisotropic X-ray refinements (i.e. at 223 and 170 K) show that the two independent tetrahedra are only slightly distorted. For the two independent Mg-octahedra, the bond distances between cation-hydroxyl groups are significantly shorter than the others. The ditrigonal rotation angle of the six-membered ring of tetrahedra is modest (α ~ 4°). The neutron structure refinement shows that the hydrogen-bonding scheme in talc consists of one donor site and three acceptors (i.e. trifurcated configuration), all the bonds having O···O ≤ 3.38 Å, H···O ~ 2.8 Å, and O–H···O ~ 111–116°. The three acceptors belong to the six-membered ring of tetrahedra juxtaposed to the octahedral sheet. The vibrational regime of the proton site appears being only slightly anisotropic. The elastic behavior of talc was investigated by means of in situ synchrotron single-crystal diffraction up to 16 GPa (at room temperature) using a diamond anvil cell. No evidence of phase transition has been observed within the pressure range investigated. PV data fit, with an isothermal third-order Birch-Murnaghan equation of state, results as follows: V 0 = 454.7(10) Å3, K T0 = 56(3) GPa, and K′ = 5.4(7). The “Eulerian finite strain” versus “normalized stress” plot yields: Fe(0) = 56(2) GPa and K′ = 5.3(5). The compressional behavior of talc is strongly anisotropic, as reflected by the axial compressibilities (i.e. β(a):β(b):β(c) = 1.03:1:3.15) as well as by the magnitude and orientation of the unit-strain ellipsoid (with ε 1:ε 2:ε 3 = 1:1.37:3.21). A comparison between the elastic parameters of talc obtained in this study with those previously reported is carried out.  相似文献   

9.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

10.
The thermo-elastic behaviour of Be2BO3(OH)0.96F0.04 (i.e. natural hambergite, Z = 8, a = 9.7564(1), b = 12.1980(2), c = 4.4300(1) Å, V = 527.21(1) Å3, space group Pbca) has been investigated up to 7 GPa (at 298 K) and up to 1,100 K (at 0.0001 GPa) by means of in situ single-crystal X-ray diffraction and synchrotron powder diffraction, respectively. No phase transition or anomalous elastic behaviour has been observed within the pressure range investigated. P?V data fitted to a third-order Birch–Murnaghan equation of state give: V 0 = 528.89(4) Å3, K T0 = 67.0(4) GPa and K′ = 5.4(1). The evolution of the lattice parameters with pressure is significantly anisotropic, being: K T0(a):K T0(b):K T0(c) = 1:1.13:3.67. The high-temperature experiment shows evidence of structure breakdown at T > 973 K, with a significant increase in the full-width-at-half-maximum of all the Bragg peaks and an anomalous increase in the background of the diffraction pattern. The diffraction pattern was indexable up to 1,098 K. No new crystalline phase was observed up to 1,270 K. The diffraction data collected at room-T after the high-temperature experiment showed that the crystallinity was irreversibly compromised. The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α 0 + α 1 T ?1/2. The refined parameters for Be2BO3(OH)0.96F0.04 are: α 0 = 7.1(1) × 10?5 K?1 and α 1 = ?8.9(2) × 10?4 K ?1/2 for the unit-cell volume, α 0(a) = 1.52(9) × 10?5 K?1 and α 1(a) = ?1.4(2) × 10?4 K ?1/2 for the a-axis, α 0(b) = 4.4(1) × 10?5 K?1 and α 1(b) = ?5.9(3) × 10?4 K ?1/2 for the b-axis, α 0(c) = 1.07(8) × 10?5 K?1 and α 1(c) = ?1.5(2) × 10?4 K ?1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α 0(a):α 0(b):α 0(c) = 1.42:4.11:1. The main deformation mechanisms in response to the applied temperature, based on Rietveld structure refinement, are discussed.  相似文献   

11.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

12.
High-pressure single-crystal X-ray diffraction measurements of synthetic LiCrSi2O6 clinopyroxene (with space group P21/c) were performed in a diamond-anvil cell up to 7.970 GPa. No phase transition has been observed within the pressure range investigated, but the elastic behavior at lower pressures (up to ~2.5 GPa) is affected by an anomalous softening due to the proximity of the phase transition to the HT-C2/c phase at 330 K and at ambient pressure. A third-order Birch–Murnaghan equation of state fitted to the compression data above 2.5 GPa yields a bulk modulus K T0 = 93(2) GPa and its first derivative K′ = 8.8(6). The structural data measured up to 7.970 GPa confirm that the space group P21/c is maintained throughout the whole pressure range investigated. The atomic parameters, obtained from the integrated diffraction intensities, suggest that the Li coordination polyhedron changes its coordination number from 5 to 6 at 6–7 GPa by means of the approach of the bridging O atom, related to the increased kinking of the B tetrahedral chain. Furthermore, at higher pressures, the structural evolution of LiCrSi2O6 provides evidence in the variation of kinking angles and bond lengths of a potential phase transition above 8 GPa to the HP-C2/c space group. A comparison of the Li-clinopyroxenes (M1 = Cr, Al, Sc, Ga, Mg + Fe) previously investigated and our sample shows that their elastic behavior and structural mechanisms of compression are analogous.  相似文献   

13.
Synchrotron single-crystal X-ray diffraction experiments at high-pressure and high-temperature conditions were performed up to 20 GPa and 573.0(2) K on a fully ordered stoichiometric dolomite and a partially disordered stoichiometric dolomite [order parameter, s = 0.26(6)]. The ordered dolomite was found to be stable up to approximately 14 GPa at ambient temperature and up to approximately 17 GPa at T = 573.0(2) K. The PV data from the ambient temperature experiments were analysed by a second-order Birch–Murnaghan equation-of-state giving K 0 = 92.7(9) GPa for the ordered dolomite and K 0 = 92.5(8) GPa for the disordered dolomite. The high-temperature data, collected for the ordered sample, were fitted by a third-order Birch–Murnaghan equation-of-state resulting in K 0 = 95(6) GPa and K′ = 2.6(7). In order to compare the three experiments results, a third-order Birch–Murnaghan equation-of-state was also calculated for the ambient temperature experiments giving K 0 = 93(3) GPa, K′ = 3.9(6) for the ordered dolomite and K 0 = 92(3) GPa, K′ = 4.0(4) for the disordered dolomite. The derived axial moduli show that dolomite compresses very anisotropically, being the c-axis approximately three times more compressible than the a-axis. The axial compressibility increases as T increases, and the a-axis is the most temperature-influenced axis. On the contrary, axial compressibility is not influenced by disordering. Structural refinements at different pressures show that Ca and Mg octahedra are almost equally compressible in the ordered dolomite with K(CaO6) = 109(4) GPa and K(MgO6) = 103(3) GPa. On the contrary, CaO6 compressibility is reduced and MgO6 compressibility is increased in the disordered crystal structure where K(CaO6) = 139(4) GPa and K(MgO6) = 89(4) GPa. Disordering is found to increase CaO6 and to decrease MgO6 bond strengths, thus making stiffer the Ca octahedron and softer the Mg octahedron. Cation polyhedra are distorted in both ordered and disordered dolomites and they increase in regularity as P increases. Ordered dolomite approaches regularity at approximately 14 GPa. The increase in regularity of octahedra in the disordered dolomite is strongly affected by the very slow regularization of MgO6 with respect to CaO6. The phase transition to the high-pressure polymorph of dolomite (dolomite-II), which is driven by a significant increase in the regularity of both cations polyhedra and mineral crystal structure, occurs in the ordered dolomite at ambient temperature at approximately 14 GPa; whereas no clear evidences of phase transition were observed as regards the disordered crystal structure.  相似文献   

14.
Thermochemical properties have been either measured or estimated for synthetic monazite, LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent of allanite. A dissakisite formation enthalpy of ?6,976.5 ± 10.0 kJ mol?1 was derived from high-temperature drop-solution measurements in lead borate at 975 K. A third-law entropy value of 104.9 ± 1.6 J mol?1 K?1 was retrieved from low-temperature heat capacity (C p) measured on synthetic LaPO4 with an adiabatic calorimeter in the 30–300 K range. The C p values of lanthanum phases were measured in the 143–723 K range by differential scanning calorimetry. In this study, La(OH)3 appeared as suitable for drop solution in lead borate and represents an attractive alternative to La2O3. Pseudo-sections were calculated with the THERIAK-DOMINO software using the thermochemical data retrieved here for a simplified metapelitic composition (La = ∑REE + Y) and considering monazite and Fe-free epidotes along the dissakisite-clinozoïsite join, as the only REE-bearing minerals. Calculation shows a stability window for dissakisite-clinozoïsite epidotes (T between 250 and 550°C and P between 1 and 16 kbar), included in a wide monazite field. The PT extension of this stability window depends on the bulk-rock Ca-content. Assuming that synthetic LaPO4 and dissakisite-(La) are good analogues of natural monazite and allanite, these results are consistent with the REE-mineralogy sequence observed in metapelites, where (1) monazite is found to be stable below 250°C, (2) around 250–450°C, depending on the pressure, allanite forms at the expense of monazite and (3) towards amphibolite conditions, monazite reappears at the expense of allanite.  相似文献   

15.
 A high pressure neutron powder diffraction study of portlandite [Ca(OH)2] has been performed at ISIS facility (U.K.); nine spectra have been collected increasing the pressure by steps, up to 10.9 GPa, by means of a Paris-Edinburgh cell installed on the POLARIS diffractometer. The tensorial formalism of the lagrangian finite strain theory and the Birch-Murnaghan equation of state have been used to determine, independently, two values of the bulk modulus of portlandite, obtaining K 0=38.3(±1.1) GPa [linear incompressibilities: K 0a=188.4(±9.9), K 0c=64.5(±2.5) GPa] and K 0=34.2(±1.4) GPa, respectively. The present results comply with values from previous measurements by X-ray diffraction [K 0=37.8(±1.8) GPa] and Brillouin spectroscopy [K 0=31.7(±2.5) GPa]. Reasonably, Ca(OH)2 has revealed to be bulkly softer than Mg(OH)2 [K 0=41(±2), K 0a=313, K 0c=57 GPa]. The Ca(OH)2 linear incompressibility values reflect the nature of forces acting to stabilize the (001) layer structure and, further, prove that the replacement Ca/Mg mainly affects the elastic properties in the (001) plane, rather than along the [001] direction. Data from a full refinement of the structure at room pressure are reported. Received January 12, 1996/Revised, accepted June 15, 1996  相似文献   

16.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

17.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   

18.

Background

The presence of natural and industrial jarosite type-compounds in the environment could have important implications in the mobility of potentially toxic elements such as lead, mercury, arsenic, chromium, among others. Understanding the dissolution reactions of jarosite-type compounds is notably important for an environmental assessment (for water and soil), since some of these elements could either return to the environment or work as temporary deposits of these species, thus would reduce their immediate environmental impact.

Results

This work reports the effects of temperature, pH, particle diameter and Cr(VI) content on the initial dissolution rates of K-Cr(VI)-jarosites (KFe3[(SO4)2 ? X(CrO4)X](OH)6). Temperature (T) was the variable with the strongest effect, followed by pH in acid/alkaline medium (H3O+/OH?). It was found that the substitution of CrO4 2?in Y-site and the substitution of H3O+ in M-site do not modify the dissolution rates. The model that describes the dissolution process is the unreacted core kinetic model, with the chemical reaction on the unreacted core surface. The dissolution in acid medium was congruent, while in alkaline media was incongruent. In both reaction media, there is a release of K+, SO4 2? and CrO4 2? from the KFe3[(SO4)2 ? X(CrO4)X](OH)6 structure, although the latter is rapidly absorbed by the solid residues of Fe(OH)3 in alkaline medium dissolutions. The dissolution of KFe3[(SO4)2 ? X(CrO4)X](OH)6 exhibited good stability in a wide range of pH and T conditions corresponding to the calculated parameters of reaction order n, activation energy E A and dissolution rate constants for each kinetic stages of induction and progressive conversion.

Conclusions

The kinetic analysis related to the reaction orders and calculated activation energies confirmed that extreme pH and T conditions are necessary to obtain considerably high dissolution rates. Extreme pH conditions (acidic or alkaline) cause the preferential release of K+, SO4 2? and CrO4 2? from the KFe3[(SO4)2 ? X(CrO4)X](OH)6 structure, although CrO4 2? is quickly adsorbed by Fe(OH)3 solid residues. The precipitation of phases such as KFe3[(SO4)2 ? X(CrO4)X](OH)6, and the absorption of Cr(VI) after dissolution can play an important role as retention mechanisms of Cr(VI) in nature.
  相似文献   

19.
Gold extraction at the Macraes gold mine in New Zealand involves concentration of pyrite and arsenopyrite, oxidation of those sulphides, then cyanidation. The ore concentrate is predominantly Otago Schist host rock (andesitic composition) with up to 15% sulphides. The oxidation step is conducted on ore concentrate slurry in an autoclave at 225°C and 3,800 kPa oxygen gas pressure with continuous feed. The slurry takes ca. 1 h to pass through the autoclave, during which time the sulphides are almost completely oxidised. Sulphide oxidation causes strong acidification of the slurry, which is maintained at pH of 1–2 by addition of CaCO3. Scales form on walls in the autoclave, with minerals reflecting progressive oxidation and alteration of the ore through the system. The schist in the ore feed has mineralogy similar to propylitically altered andesite: quartz, albite, muscovite, chlorite, and pyrite. Muscovite undergoes almost complete dissolution, with associated precipitation of quartz and alunite (KAl3(SO4)2(OH)6). Other principal minerals deposited and discharged include anhydrite (and/or gypsum), jarosite (KFe3(SO4)2(OH)6), hematite (and/or amorphous iron oxyhydroxide), and amorphous arsenates. Dissolved ferrous iron passes right through the autoclave, and variably hydrated Fe2+and Fe3+sulphate minerals, including rozenite and szomolnokite (both FeSO4.hydrate) and ferricopiapite (Fe5(SO4)6O(OH).hydrate), are formed along the way. The autoclave chemical system resembles acid–sulphate hydrothermal activity in geothermal systems and high-sulphidation epithermal mineral deposits formed in arc environments. These natural acid–sulphate systems are pervaded by volcanic vapours in the near-surface environment, where widespread dissolution of host rocks occurs and deposition of quartz, alunite, and anhydrite is common. Some of the volume loss associated with these natural systems may be due to dissolution of soluble sulphate minerals by later-stage groundwater incursion.  相似文献   

20.
Two natural CO2-rich cordierite samples (1.00 wt% CO2, 0.38 wt% H2O, and 1.65 wt% CO2, 0.15 wt% H2O, respectively) were investigated by means of Raman spectroscopy and single-crystal X-ray diffraction at ambient and high pressures. The effect of heavy-ion irradiation (Au 2.2 GeV, fluence of 1 × 1012 ions cm?2) on the crystal structure was investigated to characterize the structural alterations complementary to results reported on hydrous cordierite. The linear CO2 molecules sustained irradiation-induced breakdown with small CO2-to-CO conversion rates in contrast to the distinct loss of channel H2O. The maximum CO2 depletion rate corresponds to ~12 ± 5 % (i.e. ~0.87 and ~1.49 wt% CO2 according to the two samples, respectively). The elastic properties of CO2-rich cordierite reveal stiffening due to the CO2 molecules (non-irradiated: isothermal bulk modulus K 0 = 120.3 ± 3.7 GPa, irradiated: K 0 = 109.7 ± 3.7 GPa), but show the equivalent effect of hydrous cordierite to get softer when irradiated. The degree of anisotropy of axial compressibilities and the anomalous elastic softening at increasing pressure agrees with those reported for hydrous cordierite. Nevertheless, the experimental high-pressure measurements using ethanol–methanol reveal a small hysteresis between compression and decompression, together with the noticeable effect of pressure-induced over-hydration at pressures between 4 and 5 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号