首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation of temperature and salinity in the lower 22 km stretch of the Gautami-Godavari estuary are reported during four different seasons; hot-weather, south-west monsoon, post-monsoon and winter seasons. The seasonal variation in temperature is small, with a high of about 30°C during hot-weather season and a low of about 26°C during winter season. Unlike temperatures, the salinities in the estuary show large seasonal fluctuations. During south-west monsoon surface salinities were low (0 to 8‰) due to high fresh water run off into the estuary. During hot-weather season surface salinities of 25 to 30‰ were observed due to negligible fresh water run off.  相似文献   

2.
In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30‡E-120‡E, 30‡S30‡N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student’s t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2 m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2 m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered as an advance indicator of the possible behavior of the subsequent monsoon season. The distribution of net heat flux is predominantly negative over eastern Arabian Sea, Bay of Bengal and Indian Ocean. Anomaly between the two extreme monsoon years in post 1980 (i.e., 1988 and 1987) shows that shortwave flux, latent heat flux and net heat flux indicate reversal in sign, particularly in south Indian Ocean. Variations of the heat budget components over four smaller sectors of Indian seas, namely Arabian Sea, Bay of Bengal and west Indian Ocean and east Indian Ocean show that a small sector of Arabian Sea is most dominant during May and other sectors showing reversal in sign of latent heat flux during monsoon season.  相似文献   

3.
Sea-breeze-initiated convection and precipitation have been investigated along the east coast of India during the Indian southwest monsoon season. Sea-breeze circulation was observed on approximately 70–80% of days during the summer months (June–August) along the Chennai coast. Average sea-breeze wind speeds are greater at rural locations than in the urban region of Chennai. Sea-breeze circulation was shown to be the dominant mechanism initiating rainfall during the Indian southwest monsoon season. Approximately 80% of the total rainfall observed during the southwest monsoon over Chennai is directly related to convection initiated by sea-breeze circulation.  相似文献   

4.
BOBMEX-Pilot was organised from 23rd October–11th November, 1998 when the seasonal trough had already shifted to south Bay of Bengal. The activity during this period was marked by the development of a monsoon depression from 26th–29th October that weakened over the sea; onset of northeast monsoon along the east coast of India on 29th October; a low pressure area that formed on 2nd November over southwest Bay off Sri Lanka — southTamilnadu coast; and another cyclonic circulation that formed towards the end of the BOBMEX-Pilot period. This paper describes the development of these synoptic systems through synoptic charts and satellite data.  相似文献   

5.
Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1–5.6ms−1) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2–3.7ms−1) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition  相似文献   

6.
Systematic seasonal variations of suspended particulate matter (SPM) along a 44-km transect of the Mandovi estuary reveal that the concentrations of SPM are low at river-end stations, increase generally seaward, and are highest at sea-end stations of the estuary. An estuarine turbidity maximum (ETM) occurs at sea-end stations during June–September when river discharge is high and also in February–May when river discharge is low. These are the two windiest times of year, the former associated with the southwest monsoon and the latter characterized by a persistent sea breeze. The salinity vs. SPM plot shows that high SPM is a seaward deposit and skewed landward. Suspended matter comprised of floccules, fecal pellets, and aggregates that consist of clay and biogenic particles occur everywhere in the estuary. Diatoms are the most common and are of marine type at the sea-end and freshwater-dominated at river-end stations of the estuary. SPM is characterized by kaolinite- and smectite-rich clay mineral suites at the river- and sea-end stations, respectively. Smectite concentrations increase seawards with the increase in SPM content and are not influenced by salinity. Wind-driven waves and currents and biogeochemical processes at the mouth of estuary likely play an important role in the formation of ETM in resuspension and transformation of SPM into floccules and aggregates and in their upkeep or removal.  相似文献   

7.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaquina Estuary (Oregon, USA) as well as the relationships between physical forcing and gross oceanic input of nutrients and phytoplankton. The ocean is the dominant source of dissolved inorganic nitrogen (DIN) and phosphate to the lower portion of Yaquina Bay during the dry season (May through October). During this time interval, high levels of dissolved inorganic nitrogen (primarily in the form of nitrate) and phosphate entering the estuary lag upwelling favorable winds by 2 days. The nitrate and phosphate levels entering the bay associated with coastal upwelling are correlated with the wind stress integrated over times scales of 4–6 days. In addition, there is a significant import of chlorophyll a to the bay from the coastal ocean region, particularly during July and August. Variations in flood-tide chlorophyll a lag upwelling favorable winds by 6 days, suggesting that it takes this amount of time for phytoplankton to utilize the recently upwelled nitrogen and be transported across the shelf into the estuary. Variations in water properties determined by ocean conditions propagate approximately 11–13 km into the estuary. Comparison of nitrogen sources to Yaquina Bay shows that the ocean is the dominant source during the dry season (May to October) and the river is the dominant source during the wet season with watershed nitrogen inputs primarily associated with nitrogen fixation on forest lands.  相似文献   

8.
Salinity profiles and meteorological data were analyzed during February, May, and September 2006 in Chetumal Bay, a large, shallow estuary of the Western Caribbean. Local meteorological conditions revealed three seasons: (1) a dry season (March–May); (2) a wet season (June–October); and (3) the nortes season, with northerly wind events (October–February). During the nortes and wet seasons, salinity ranged between 13 and 16 psu, and salinity was highest in the dry season, ranging between 18 and 22 psu over most of the area; a strong stratification and a significant contribution of salty water characterized this season. Strong horizontal gradients were observed near Rio Hondo during the three seasons. Deep and narrow peculiar bathymetric features called the pozas showed a strong stratification and a relatively high salinity. The northern part of Chetumal Bay and probably the entire system are far from being homogeneous.  相似文献   

9.
This paper describes the variability in the diurnal range of SST in the north Indian Ocean using in situ measurements and tests the suitability of simple regression models in estimating the diurnal range. SST measurements obtained from 1556 drifting and 25 moored buoys were used to determine the diurnal range of SSTs. The magnitude of diurnal range of SST was highest in spring and lowest in summer monsoon. Except in spring, nearly 75–80% of the observations reported diurnal range below 0.5°C. The distributions of the magnitudes of diurnal warming across the three basins of north Indian Ocean (Arabian Sea, Bay of Bengal and Equatorial Indian Ocean) were similar except for the differences between the Arabian Sea and the other two basins during November–February (winter monsoon) and May. The magnitude of diurnal warming that depended on the location of temperature sensor below the water level varied with seasons. In spring, the magnitude of diurnal warming diminished drastically with the increase in the depth of temperature sensor. The diurnal range estimated using the drifting buoy data was higher than the diurnal range estimated using moored buoys fitted with temperature sensors at greater depths. A simple regression model based on the peak solar radiation and average wind speed was good enough to estimate the diurnal range of SST at ∼1.0 m in the north Indian Ocean during most of the seasons except under low wind-high solar radiation conditions that occur mostly during spring. The additional information on the rate of precipitation is found to be redundant for the estimation of the magnitude of diurnal warming at those depths.  相似文献   

10.
The temperature field in the coastal region off south-west India exhibits a wellmarked annual cycle. Around March the isotherms develop an upward tilt near the coast. The magnitude of the tilt increases continuously till August, then decreases and vanishes in November. To check the hypothesis that this feature is in response to the local wind, we have used the resultant wind data to determine the annual march of the wind stress. It is found that though weak during November–March, the monthly-mean longshore component of the wind stress is always conducive to coastal upwelling and follows a pattern similar to that of the isotherm tilt. We interpret this result to indicate that coastal processes in the area during April–October are controlled by the longshore component of the local wind stress in accordance with the classical model for a coastal upwelling system. During November–March, when the wind stress is weak, it appears that the influence of the longshore density gradient, which persists at the surface during this period, dominates over the effect of the wind.  相似文献   

11.
District-wide drought climatology over India for the southwest monsoon season (June–September) has been examined using two simple drought indices; Percent of Normal Precipitation (PNP) and Standardized Precipitation Index (SPI). The season drought indices were computed using long times series (1901–2003) of southwest monsoon season rainfall data of 458 districts over the country. Identification of all India (nation-wide) drought incidences using both PNP and SPI yielded nearly similar results. However, the district-wide climatology based on PNP was biased by the aridity of the region. Whereas district-wide drought climatology based on SPI was not biased by aridity. This study shows that SPI is a better drought index than PNP for the district-wide drought monitoring over the country. SPI is also suitable for examining break and active events in the southwest monsoon rainfall over the country. The trend analysis of district-wide season (June–September) SPI series showed significant negative trends over several districts from Chattisgarh, Bihar, Kerala, Jharkhand, Assam and Meghalaya, Uttaranchal, east Madhya Pradesh, Vidarbha etc., Whereas significant positive trends in the SPI series were observed over several districts from west Uttar Pradesh, west Madhya Pradesh, South & north Interior Karnataka, Konkan and Goa, Madhya Maharashtra, Tamil Nadu, East Uttar Pradesh, Punjab, Gujarat etc.  相似文献   

12.
Analysis of fifty four (1951–2004) years of daily energetics of zonal waves derived from NCEP/NCAR wind (u and υ) data and daily rainfall received over the Indian landmass (real time data) during southwest monsoon season (1 June–30 September) indicate that energetics (momentum transport and kinetic energy) of lower tropospheric ultra-long waves (waves 1 and 2) of low latitudes hold a key to intra-seasonal variability of monsoon rainfall over India. Correlation coefficient between climatology of daily (122 days) energetics of ultra-long waves and climatology of daily rainfall over Indian landmass is 0.9. The relation is not only significant but also has a predictive potential. The normalised plot of both the series clearly indicates that the response period of rainfall to the energetics is of 5–10 days during the onset phase and 4–7 days during the withdrawal phase of monsoon over India. During the established phase of monsoon, both the series move hand-in-hand. Normalised plot of energetics of ultra-long waves and rainfall for individual year do not show marked deviation with respect to climatology. These results are first of its kind and are useful for the short range forecast of rainfall over India.  相似文献   

13.
Impact of sea breeze on wind-seas off Goa, west coast of India   总被引:1,自引:0,他引:1  
After withdrawal of the Indian Summer Monsoon and until onset of the next monsoon, i.e., roughly during November–May, winds in the coastal regions of India are dominated by sea breeze. It has an impact on the daily cycle of the sea state near the coast. The impact is quite significant when large scale winds are weak. During one such event, 1–15 April 1997, a Datawell directional waverider buoy was deployed in 23 m water depth off Goa, west coast of India. Twenty-minute averaged spectra, collected once every three hours, show that the spectrum of sea-breeze-related ‘wind-seas’ peaked at 0.23 ±0.05 Hz. These wind-seas were well separated from swells of frequencies less than 0.15 Hz. The TMA spectrum (Bouwset al 1985) matched the observed seas spectra very well when the sea-breeze was active and the fetch corresponding to equilibrium spectrum was found to be 77±43 km during such occasions. We emphasize on the diurnal cycle of sea-breeze-related sea off the coast of Goa and write an equation for the energy of the seas as a function of the local wind  相似文献   

14.
 The Mfolozi Estuary on the KwaZulu-Natal coast of South Africa is the most turbid estuary in Natal due to poor catchment management, leading to large quantities of suspended particulate matter (SPM) entering the estuary from the Mfolozi River. This paper quantities some of the solute and sediment dynamics in the Mfolozi Estuary where the main documented environmental concern is the periodic input of SPM from the Mfolozi Estuary to the St. Lucia system, causing reduction of light penetration and endangering biological productivity in this important nature reserve. Synoptic water level results have allowed reach mean bed shear stresses and velocities to be calculated for an observed neap tidal cycle. Results indicate that ebb velocities dominate the sediment transport processes in the estuary when fluvial input in the Mfolozi River is of the order of 15–20 m3 s–1. Observed and predicted flood tide velocities are too low (<0.35 m s–1) to suspend and transport significant amounts of SPM. Observed results indicate that although the SPM load entering the estuary is dominantly from the Mfolozi River, the Msunduzi River flow plays a major role in the composition of the estuary's salinity and velocity fields. It is calculated that the Mfolozi Estuary would fill with sediment in 1.3 years if it was cut off from the sea. The major fluvial flood events help maintain the estuary by periodically pushing sediment seawards (spit progrades seawards 5 m yr–1) and scouring and maintaining the main flow channel in the estuary. During low fluvial flow conditions, tidal flow velocities will become the dominant control on sediment transport in the estuary. Interchange of SPM between the St. Lucia and Mfolozi estuaries under present conditions is complicated by the strong transverse velocity shear between the two systems at their combined mouth. This is creating a salinity-maintained axial convergence front that suppresses mixing of solutes and SPM between the systems for up to 10 h of the tidal cycle during observed conditions. Received: 22 May 1995 · Accepted: 31 July 1995  相似文献   

15.
Carbohydrates including uronic acids are among the active components of dissolved organic carbon, and play an important role in biogeochemical cycling of organic carbon in marine environments. In order to understand their distribution, concentrations of total dissolved carbohydrate (TCHO), dissolved polysaccharide (PCHO), dissolved monosaccharide (MCHO), and dissolved uronic acid (URA) were measured in the Mandovi estuary, west coast of India during the monsoon and premonsoon seasons. The estuary experienced nearly fresh water condition during the monsoon season and marine condition during the pre-monsoon season. Concentrations of TCHO, MCHO and URA ranged from 17.7 to 67.3 μM C, 4.1 to 15.5 μM C and 2.3 to 10.8 μM C, and their contribution to dissolved organic carbon (DOC) varied from ∼11 to 60%, 2.5 to 9.7%, and 1.8 to 5.3%, respectively. PCHO accounted for ∼52 to 92% of the TCHO. Generally, concentrations and yields of TCHO species were greater during the monsoon season. Phytoplankton abundance and bacterial cell numbers influenced the distribution of TCHO in the pre-monsoon season but not during the monsoon season. Transport of TCHO rich (11 to 60%) dissolved organic matter from the Mandovi estuary to the coastal waters during the monsoon season may affect ecosystem function by fueling biological activity of heterotrophic micro-organisms.  相似文献   

16.
The nearshore parameters, viz., wave runup, wave setup, and wave energy have been estimated during storm and normal conditions of SW monsoon (June–September) and NE monsoon (November–February) by empirical parameterization along Visakhapatnam coast. These results were compared with the field observations during three storms of SW monsoon season in the year 2007. The higher nearshore wave energies were observed at R.K. Beach, Jodugullapalem beach, and Sagarnagar beach during both the seasons. During storm events, the higher wave energies associated with higher wave runups cause severe erosion along the wave convergence zones. The storm wave runups (SWRUs) were higher at R.K. Beach, Palm beach, Jodugullapalem beach, and Sagarnagar Beach. The yearly low wave energy was observed at Lawson’s Bay with lowest wave runup, considered as safest zone. R.K. Beach, Palm beach, and Jodugullapalem beach are identified as vulnerable zones of wave attack. It is noteworthy that in addition to wave energies, wave runups and wave setups also play a vital role in endangering the coast.  相似文献   

17.
Studies on the suspended particulate matter (SPM) in the Mandovi estuary, western India indicate that during the monsoon and pre-monsoon, the SPM increases, and the major and trace metals decrease from stations in the upstream to downstream of the estuary. SPM is consistently low at all stations during the post-monsoon. Trace metals (Cu, Ni, Zn, Cr, and Pb) show strong inter-relationships. They correlate well with Fe and Mn only during the monsoon. The concentrations of Cr, Cu, and Pb are high during the post-monsoon. Enrichment factors and I geo values of metals indicate that Mn shows significant to strong pollution in all seasons, while Cr, Ni, and Zn during monsoon, and Cr during the post-monsoon show moderate pollution. SPM is controlled by the turbidity maximum, while major and trace metals are governed seasonally by a combination of river discharge, resuspension, spillage of Fe–Mn particulates, and anthropogenic contamination. Incursion of saline waters deep into the river channel during the dry season facilitates aggregation and settling of particulate-borne pollutants close to the discharge area, thereby keeping the estuarine waters free from major contamination.  相似文献   

18.
A physical-biological-chemical model (PBCM) is used for investigating the seasonal cycle of air-sea carbon flux and for assessing the effect of the biological processes on seasonal time scale in the Arabian Sea (AS) and Bay of Bengal (BoB), where the surface waters are subjected to contrasting physical conditions. The formulation of PBCM is given in Swathi et al (2000), and evaluation of several ammonium-inhibited nitrate uptake models is given in Sharada et al (2005). The PBCM is here first evaluated against JGOFS data on surface pCO2 in AS, Bay of Bengal Process Studies (BoBPS) data on column integrated primary productivity in BoB, and WOCE Il data on dissolved inorganic carbon (DIC) and alkalinity (ALK) in the upper 500 meters at 9°N in AS and at 10°N in BoB in September–October. There is good qualitative agreement with local quantitative discrepancies. The net effect of biological processes on air-sea carbon flux on seasonal time scale is determined with an auxiliary computational experiment, called the abiotic run, in which the biological processes are turned off. The difference between the biotic run and abiotic run is interpreted as the net effect of biological processes on the seasonal variability of chemical variables. The net biological effect on air-sea carbon flux is found to be highest in southwest monsoon season in the northwest AS, where strong upwelling drives intense new production. The biological effect is larger in AS than in BoB, as seasonal upwelling and mixing are strong in AS, especially in the northeast, while coastal upwelling and mixing are weak in BoB.  相似文献   

19.
Physical and chemical characteristics of the Hooghly estuary during winter (December 1997–January 1998), summer (May 1998) and post-monsoon (November 1998) seasons have been studied. Salinity varied spatially and temporally and seasonally during ebb and flood tide conditions. Water temperature showed a difference of 10‡C in winter to summer. Temperature did not vary much vertically as it is a well-mixed estuary. Strong currents exceeding 100 cm S-1 were observed during peak ebb and flood tide conditions irrespective of the season. Longitudinal eddy diffusion coefficient (K x ) was estimated as 757m S-1 and 811m2 S-1 during summer and post-monsoon seasons, respectively. The vertical eddy diffusion coefficient (εv) was estimated as 0.0337 m2 S-1 during post-monsoon season. The salinity and current observations are compared with those obtained from models reported earlier. Values of pH, Dissolved Oxygen and Biological Oxygen Demand are within the threshold limits of the estuarine environment. Nutrients show seasonal variation in the estuarine environment. High values (160-2686 mg l-1) of total suspended matter were noticed both at surface and bottom in the study region showing the impact of fresh water and sediment transportation.  相似文献   

20.
Time series of daily averaged rainfall of about 40 rain gauge stations of south Kerala, situated at the southern-most part of peninsular India between latitudes about 8‡N and 10‡N were subjected to Wavelet Analysis to study the Intra Seasonal Oscillation (ISO) in the rainfall and its inter-annual variability. Of the 128 days, 29th May to 3rd October of each of the 95 years 1901-1995 were analysed. We find that the period of ISO does not vary during a monsoon season in most of the years, but it has large inter-annual variability in the range 23 to 64 days. Period-wise, the years cluster into two groups of ISO, the SHORT consisting of periods 23, 27 and 32 days and the LONG with a single period of 64 days, both the sets at a significance level of 99%. During the 95 years at this level of significance there are 44 years with SHORT and 20 years with LONG periods. 11 years have no ISO even at the 90% level of significance. We composited NCEP SST anomalies of the summer monsoon season June to September for two groups of years during the period 1965–1993. The first group is of 5 years with a LONG ISO period of 64 days for south Kerala rainfall at significance level of 99% and the second group is of 12 years with SHORT ISO periods of 23, 27 and 32 days at the same level of significance. The SST anomaly for the LONG (SHORT) ISO resembles that for an El Nino (La Nina).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号