首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A depth migration method is presented that uses Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrained to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples:
  • 1 a point diffractor, and
  • 2 a dipping layer and syncline interface model.
It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation.  相似文献   

2.
In order to make 3D prestack depth migration feasible on modern computers it is necessary to use a target-oriented migration scheme. By limiting the output of the migration to a specific depth interval (target zone), the efficiency of the scheme is improved considerably. The first step in such a target-oriented approach is redatuming of the shot records at the surface to the upper boundary of the target zone. For this purpose, efficient non-recursive wavefield extrapolation operators should be generated. We propose a ray tracing method or the Gaussian beam method. With both methods operators can be efficiently generated for any irregular shooting geometry at the surface. As expected, the amplitude behaviour of the Gaussian beam method is better than that of the ray tracing based operators. The redatuming algorithm is performed per shot record, which makes the data handling very efficient. From the shot records at the surface‘genuine zero-offset data’are generated at the upper boundary of the target zone. Particularly in situations with a complicated overburden, the quality of target-oriented zero-offset data is much better than can be reached with a CMP stacking method at the surface. The target-oriented zero-offset data can be used as input to a full 3D zero-offset depth migration scheme, in order to obtain a depth section of the target zone.  相似文献   

3.
Migration is essential to seismic imaging. It is carried out by backward extrapolation of the wavefield registered on the observation surface. The quality of images depends on the accuracy of the wavefield reconstruction at interior subsurface points. From the theory based on the exact solution of the scalar wave equation it is known that, for accurate wave extrapolation, data must be obtained from an infinite observation surface. Limiting of migration apertures, which is inevitable in practice, leads to artefacts in extrapolated fields. The distortion they cause in 2D and 3D imaging is different. In 2D migration, the artefacts known as truncation effects are much weaker than the signals being extrapolated and for this reason attract no special attention. In 3D migration, diffractions caused by an aperture edge are stronger and may create serious problems. For a circular aperture, their amplitudes are comparable to the amplitudes of the signals themselves. The study of aperture diffractions is intended to help in the search for ways of either suppressing them efficiently or deliberately utilizing them in order to improve imaging.
In optics, diffractions by an aperture play a constructive role in image making. This research shows that the same may take place in seismic imaging.  相似文献   

4.
Most seismic reflection imaging methods are confronted with the difficulty of accurately knowing input velocity information. To eliminate this, we develop a special prestack depth migration technique which avoids the necessity of constructing a macro-velocity model. It is based upon the weighted Kirchhoff-type migration formula expressed in terms of model-independent stacking velocity and arrival angle. This formula is applied to synthetic sub-basaltic data. Numerical results show that the method can be used to successfully image beneath basalts.  相似文献   

5.
将局部余弦基小波束波场分解、传播与观测系统沉降法叠前深度偏移相结合,推导了源-检波器观测系统沉降法传播算子.本算法中,先对频率域的共点源和共点检波器道集做局部余弦小波束分解,然后分别沿共小波束源和共小波束检波器在深度方向延拓得到下一层波场.每个深度的波场,都等效于把源和检波器放在该层后所能接收到的地震记录,每点的像值由炮点和检波点重合时的零时刻波场值给出.通过二维SEG/EAGE盐丘模型和Marmousi模型的偏移成像结果验证该方法理论推导的正确性.另外,结果显示该方法继承了小波束域波场延拓在速度扰动较大情况下波传播及成像精度高的优点.  相似文献   

6.
双程波方程逆时深度偏移是复杂介质高精度成像的有效技术,但其结果中通常包含成像方法引起的噪音和假象,一般的滤波方法会破坏成像剖面上的振幅,其中的假象也会给后续地质解释带来困扰.将波场进行方向分解然后实现入射波与反射波的相关成像能够有效地消除这类成像噪音,并提高逆时偏移成像质量.波传播方向的分解通常在频率波数域实现,它会占用大量的存储和计算资源,不便于在沿时间外推的逆时深度偏移中应用.本文提出解析时间波场外推方法,可以在时间外推的每个时间片上实现波传播方向的显式分解,逆时深度偏移中利用分解后的炮检波场进行对应的相关运算,实现成像噪音和成像信号的分离.在模型和实际数据上的测试表明,相比于常规互相关逆时偏移成像结果,本文方法能够有效地消除低频成像噪音和特殊地质构造导致的成像假象.  相似文献   

7.
几种相对振幅保持的叠前偏移方法对比分析   总被引:5,自引:4,他引:1       下载免费PDF全文
本文首先介绍了几种振幅保持的叠前偏移方法,通过对这几种方法进行对比分析可以看出每种方法所考虑的影响因素不同,所以它们的加权函数不同.第一类加权函数没有考虑焦散和孔径的影响;第二类加权函数考虑了焦散的影响,但是没有考虑孔径的影响,第三类加权函数既考虑了焦散的影响又考虑了孔径的影响,而第四类加权函数是从波动方程出发,通过分解上、下行波场,根据成像条件来求取加权函数的.然后通过模型验证了共炮检距保幅偏移方法的有效性,从而说明了保幅偏移对振幅的补偿作用.最后考虑了偏移孔径与权函数的关系,它们之间主要通过连续窗函数μ(ξ,sξt)来控制,这样才能有效地消除偏移过程中所产生的噪声.  相似文献   

8.
A crucial point in the processing of 3D seismic data is the migration step, both because of its 3D nature and the computational cost involved. The efficiency and accuracy of 3D migration are determined by the wavefield extrapolation technique employed. Wavefield extrapolation based on second-order differential operators of variable-length is very efficient and accurate at the same time. Compared to migration based on the McClellan transform and operator splitting, the use of variable-length second-order differential operators offers significant advantages. The 3D migration operator has an almost perfect circular symmetry. No positioning errors in the 45° azimuth between the in-line and cross-line directions are evident. The method is, in practice, only limited by spatial aliasing and does not require expensive interpolation of data to reduce numerical artifacts. This reduces the computational cost of 3D one-pass depth migration by a large factor.  相似文献   

9.
An efficient full 3D wavefield extrapolation technique is presented. The method can be used for any type of subsurface structure and the degree of accuracy and dip-angle performance are user-defined. The extrapolation is performed in the space-frequency domain as a space-dependent spatial convolution with recursive Kirchhoff extrapolation operators. To get a high level of efficiency the operators are optimized such that they have the smallest possible size for a specified accuracy and dip-angle performance. As both accuracy and maximum dip-angle are input parameters for the operator calculation, the method offers the possibility of a trade-off between these quantities and efficiency. The operators are calculated in advance and stored in a table for a range of wavenumbers. Once they have been calculated they can be used many times. At the basis of the operator design is the well-known phase-shift operator. Although this operator is exact for homogeneous media only, it is assumed that it may be applied locally in case of inhomogeneities. Lateral velocity variations can then be handled by choosing the extrapolation operator according to the local value of the velocity. Optionally the operators can be designed such that they act as spatially variant high-cut filters. This means that the evanescent field can be suppressed in one pass with the extrapolation. The extrapolation method can be used both in prestack and post-stack applications. In this paper we use it in zero-offset migration. Tests on 2D and 3D synthetic and 2D real data show the excellent quality of the method. The full 3D result is much better then the result of two-pass migration, which has been applied to the same data. The implementation yields a code that is fully vectorizable, which makes the method very suitable for vector computers.  相似文献   

10.
Despite being less general than 3D surface‐related multiple elimination (3D‐SRME), multiple prediction based on wavefield extrapolation can still be of interest, because it is less CPU and I/O demanding than 3D‐SRME and moreover it does not require any prior data regularization. Here we propose a fast implementation of water‐bottom multiple prediction that uses the Kirchhoff formulation of wavefield extrapolation. With wavefield extrapolation multiple prediction is usually obtained through the cascade of two extrapolation steps. Actually by applying the Fermat’s principle (i.e., minimum reflection traveltime) we show that the cascade of two operators can be replaced by a single approximated extrapolation step. The approximation holds as long as the water bottom is not too complex. Indeed the proposed approach has proved to work well on synthetic and field data when the water bottom is such that wavefront triplications are negligible, as happens in many practical situations.  相似文献   

11.
12.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

13.
An amplitude-preserving migration aims at imaging compressional primary (zero-or) non-zero-offset reflections into 3D time or depth-migrated reflections so that the migrated wavefield amplitudes are a measure of angle-dependent reflection coeffcients. The principal objective is the removal of the geometrical-spreading factor of the primary reflections. Various migration/inversion algorithms involving weighted diffraction stacks proposed recently are based on Born or Kirchhoff approximations. Here, a 3D Kirchhoff-type zero-offset migration approach, also known as a diffraction-stack migration, is implemented in the form of a time migration. The primary reflections of the wavefield to be imaged are described a priori by the zero-order ray approximation. The aim of removing the geometrical- spreading loss can, in the zero-offset case, be achieved by not applying weights to the data before stacking them. This case alone has been implemented in this work. Application of the method to 3D synthetic zero-offset data proves that an amplitude-preserving migration can be performed in this way. Various numerical aspects of the true-amplitude zero-offset migration are discussed.  相似文献   

14.
Conventionally, the Fresnel zone and the geometrical spreading factor are investigated separately, because they belong to different theories of wave propagation. However, if the paraxial ray method is used for establishing the Fresnel–Kirchhoff diffraction formula for a laterally inhomogeneous multilayered medium, it can be shown that the normalized geometrical spreading factor is inversely proportional to the area of the first Fresnel zone associated with the reflection point. Therefore, if no diffracting edge cuts the first Fresnel zone, the geometrical optics approximation represents the principal part of the wavefield obtained by Fresnel–Kirchhoff diffraction theory. Otherwise, the geometrical optics approximation has to be corrected by adding edge diffractions. It is also shown that Kirchhoff-type migration and geometrical spreading factor correction both reduce the first Fresnel zone to a zone with unit area.  相似文献   

15.
反射波场分离是井孔地震资料处理中极其重要的一个环节,波场分离的质量直接影响成像结果的精度.不管是VSP还是井间地震资料,其反射波时距曲线都近似直线型,根据这一特征,本文提出一种改进的线性Radon变换方法来进行井孔资料的反射波上下行波场分离.该方法基于频率域线性Radon变换,通过引入一个新的变量λ来消除变换算子对频率的依赖性,避免了求取每一频率分量对应的不同变换算子,显著降低了计算成本;文中在求解该方法对应的最小二乘问题时,引入了发展较为成熟的高分辨率Radon变换技术来进一步提高波场分离的精度.采用本文方法进行井孔地震资料的上下行波场分离可以在保证分离精度的前提下有效地提高计算效率.根据上下行波在λ-f域内分布的特殊性,设计简单的滤波算子就可实现上下行波场的分离.最后通过合成数据试算以及实际资料处理(VSP数据和井间地震数据)验证了该方法的可行性和有效性.  相似文献   

16.
尤加春  曹俊兴  王俊 《地球物理学报》1954,63(10):3838-3848
叠前深度偏移理论及方法一直是地震数据成像中研究的热点问题.业界对单程波叠前深度偏移方法和逆时深度偏移开展了深入的研究,但对双程波方程波场深度延拓理论及成像方法的研究还鲜有报道.本文以地表记录的波场值为基础,利用单程波传播算子估计波场对深度的偏导数,为在深度域求解双程波方程提供充分的边界条件,并提出利用矩阵分解理论实现双程波方程的波场深度外推.通过对强速度变化介质中传播波场的计算,与传统的单程波偏移方法相比,本文提出的偏移方法计算的波场与常规有限差分技术计算的波场相一致,证明了本方法计算的准确性.通过对SEAM模型的成像,在相同的成像参数下,与传统的单程波偏移算法和逆时深度偏移算法方法相比,本文提出的偏移方法能够提供更少的虚假成像和更清晰的成像结果.本文所提偏移算法具有深度偏移和双程波偏移的双重特色,推动和发展了双程波叠前深度偏移的理论和实践.  相似文献   

17.
多次波是地下反射层的多次波反射,也蕴含了地下反射界面的信息,因此并不是绝对地只能被当做噪音来处理.为实现对地下构造的准确成像,本文基于广义概念上的炮偏移成像算法,对常规一次波偏移方法从用于向下延拓的上、下行场以及成像条件方面进行了改进,将同时含有表层多次波的炮记录与脉冲震源之和作为下行延拓的震源波场,将同时含有表层多次...  相似文献   

18.
基于自适应优化有限差分方法的全波VSP逆时偏移   总被引:1,自引:1,他引:0       下载免费PDF全文
与地面地震资料相比,VSP资料具有分辨率高、环境噪声小及能更好地反映井旁信息等优点.常规VSP偏移主要对上行反射波进行成像,存在照明度低、成像范围受限等问题.为了增加照明度、拓宽成像范围、提高成像精度,本文采用直达波除外的所有声波波场数据(全波),包括一次反射波、多次反射波等进行叠前逆时偏移成像.针对逆时偏移中的四个关键问题,即波场延拓、吸收边界条件、成像条件及低频噪声的压制,本文分别采用自适应变空间差分算子长度的优化有限差分方法(自适应优化有限差分方法)求解二维声波波动方程以实现高精度、高效率的波场延拓,采用混合吸收边界条件压制因计算区域有限所引起的人工边界反射,采用震源归一化零延迟互相关成像条件进行成像,采用拉普拉斯滤波方法压制逆时偏移中产生的低频噪声.本文对VSP模型数据的逆时偏移成像进行了分析,结果表明:自适应优化有限差分方法比传统有限差分方法具有更高的模拟精度与计算效率,适用于VSP逆时偏移成像;全波场VSP逆时偏移成像比上行波VSP逆时偏移的成像范围大、成像效果好;相对于反褶积成像条件,震源归一化零延迟互相关成像条件具有稳定性好、计算效率高等优点.将本文方法应用于某实际VSP资料的逆时偏移成像,进一步验证了本文方法的正确性和有效性.  相似文献   

19.
Seismic data are usually separated into P-waves and S-waves before being put through a scalar (acoustic) migration. The relationship between polarization and moveout is exploited to design filters that extract the desired wavetype. While these filters can always be applied to shot records, they can only be applied to a triaxial common-receiver gather in special cases since the moveout of scattered energy on the receiver gather relates to path differences between the surface shots and the scatterer while the polarization is determined by the path from scatterer to downhole geophone. Without the ability to separate wavefields before migration, a ‘vector scalar’ or an elastic migration becomes a necessity. Here the propagation of the elastic wavefield for a given mode (e.g. P-S) is approximated by two scalar (acoustic) propagation steps in a ‘vector scalar’ migration. ‘Vector’ in that multicomponent data is migrated and 'scalar’ in that each propagation step is based on a scalar wave equation for the appropriate mode. It is assumed that interaction between the wavefields occurs only once in the far-field of both the source and receiver. Extraction of the P, SV and SH wavefields can be achieved within the depth migration (if one assumes isotropy in the neighbourhood of the downhole receiver) by a projection onto the polarization for the desired mode. Since the polarization of scattered energy is only a function of scatterer position and receiver position (and not source position), the projection may be taken outside the migration integral in the special case of the depth migration of a common-receiver gather. The extraction of the desired mode is then performed for each depth migration bin after the separate scalar migration of each receiver gather component. This multicomponent migration of triaxial receiver gathers is conveniently implemented with a hybrid split-step Fourier-excitation-time imaging condition depth migration. The raytracing to get the excitation-time imaging condition also provides the expected polarization for the post-migration projection. The same downward extrapolated wavefield can be used for both the P-P and P-S migrations, providing a flexible and efficient route to the migration of multicomponent data. The technique is illustrated on a synthetic example and a single-level Walk-away Seismic Profile (WSP) from the southern North Sea. The field data produced images showing a P-P reflector below the geophone and localized P-P and P-S scatterers at the level of the geo-phone. These scatterers, which lie outside the zone of specular illumination, are interpreted as faults in the base Zechstein/top Rotliegendes interface.  相似文献   

20.
三维VSP数据高效偏移成像的超道集方法   总被引:1,自引:1,他引:0       下载免费PDF全文
当前的三维VSP地震数据偏移成像实现都是在共炮点道集或共检波点道集中逐个道集循环进行的,计算效率相对较低.根据三维VSP观测系统中炮点和检波点布置的特殊性和地震波场满足线性叠加的特性,本文提出了一种三维VSP数据的高效偏移成像方法,即首先通过对三维VSP共接收点道集进行地震数据的广义合成得到一种超道集,然后在共接收点道集的波场深度外推过程中逐步应用多震源波场对超道集进行偏移成像,即利用一次波场深度外推循环完成对所有共检波点道集数据的偏移成像.通过三维VSP模型数据与实际地震数据的偏移成像试验验证了这种高效的超道集偏移成像方法可取得与常规共检波点道集相当的偏移成像效果,还具有极高的计算效率,其计算量与单个共检波点道集的偏移成像计算量相当.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号