首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Soft X–ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of , plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron star surface is an unlikely mechanism for the quiescent emission of SXRTs, as it requires very low magnetic fields and/or long spin periods. Thermal radiation from a cooling neutron star surface in between the outbursts can be ruled out as the only cause of the quiescent emission. We find that accretion onto the neutron star magnetosphere and shock emission powered by an enshrouded radio pulsar provide far more plausible models. In the latter case the range of allowed neutron star spin periods and magnetic fields is consistent with the values recently inferred from the properties of kHz quasi-periodic oscillation in low mass X–ray binaries. If quiescent SXRTs contain enshrouded radio pulsars, they provide a missing link between X–ray binaries and millisecond pulsars. Received 4 November 1997; Accepted 15 April 1998  相似文献   

2.
The loss of angular momentum owing to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave-induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the magnetic field of the star. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very different spin rates to converge, on a time-scale of approximately 1 year. The results suggest that stars with magnetic fields ≤1013 G could emit a detectable gravitational wave signal for perhaps several years after the supernova event. Stars with higher fields (magnetars) are unlikely to emit a detectable gravitational wave signal via the r-mode instability. The model also suggests that the r-mode instability could be extremely effective in preventing young neutron stars from going dynamically unstable to the bar-mode.  相似文献   

3.
I review our understanding of the evolution of the spin periods of neutron stars in binary stellar systems, from their birth as fast, spin-powered pulsars, through their middle life as accretion-powered pulsars, upto their recycling or “rebirth” as spin-powered pulsars with relatively low magnetic fields and fast rotation. I discuss how the new-born neutron star is spun down by electromagnetic and “propeller” torques, until accretion of matter from the companion star begins, and the neutron star becomes an accretion-powered X-ray pulsar. Detailed observations of massive radio pulsar binaries like PSR 1259-63 will yield valuable information about this phase of initial spindown. I indicate how the spin of the neutron star then evolves under accretion torques during the subsequent phase as an accretion-powered pulsar. Finally, I describe how the neutron star is spun up to short periods again during the subsequent phase of recycling, with the accompanying reduction in the stellar magnetic field, the origins of which are still not completely understood.  相似文献   

4.
《New Astronomy》2007,12(3):165-168
We derive the bulk viscous damping timescale of hybrid stars, neutron stars with quark matter core. The r-mode instability windows of the stars show that the theoretical results are consistent with the rapid rotation pulsar data, which may give an indication for the existence of quark matter in the interior of neutron stars. Hybrid stars instead of neutron or strange stars may lead to submillisecond pulsars.  相似文献   

5.
The phenomenon of pulsars is considered as the evidence for existence of black holes in neutron and quark stars. Within the framework of the degenerated star model with black-hole interior the existence of millisecond pulsars withP<0.5 ms and single pulsars with negative derivative of the period were predicted. The anisotropic accretion of neutron (or quark) star matter on to a rotating black hole leads to the formation of directed radiation (projector), which makes heat spots at surface (volcanos), that explains the nature of pulsating radiation and the complicated structure of impulses. This model gives both the mechanism of self-acceleration of degenerated star rotation (mass accretion on to the internal black hole) producing millisecond pulsars and also the mechanism of significant deceleration of rotation (ejection of neutral mass through a volcanic crater), leading to long-periodic X-ray pulsars. The black hole produces high densities and temperatures of the degenerated star mass that transforms gradually the neutron star into quark star (Cygnus X-3).  相似文献   

6.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

7.
The initial period of a pulsar is an important factor in our understanding of the formation of neutron stars and of the nature of the equation of state of neutron star matter.Up to now this quantity can only be obtained for a few pulsars for which accurate age and braking index are known.Based on the theory of the offcenter dipole emission,in which pulsars obtain theiry high velocities depending on the initial periods,we calculate the initial period using the proper motion data,Because the orbital velocity of the progenitor and asymmetric kick in the supernova explosion may also contribute to the observed velocity of the pusar,the derived values of initial periods are lower limits.For normal pulsars,the initial periods are in the range of 0.6~2.6ms.For the millisecond pulsars,the initial periods are comparable to their current periods,and the ratio between the initial period and the current period increases with the decrease of the current period.For PSR B1937 21 with the shortest period of 1.56ms,the ratio is 0.77.  相似文献   

8.
We present a numerical analysis of the spin evolution of neutron stars in low-mass X-ray binaries, trying to explain the discrepancy in the spin period distribution between observations of millisecond pulsars and theoretical results. In our calculations, we take account of possible effects of radiation pressure and irradiation-induced instability on the structure of the disk, and the evolution of the mass transfer rate, respectively. We report the following results: (1) The radiation pressure in the accretion disk leads to a slight increase of spin periods, and the variation of mass transfer rate caused by the neutron star irradiation can shorten the spin-down phase of evolution. (2) The calculated results of the model combining radiation pressure and irradiation show that the accretion is strongly limited by the radiation pressure in the high mass transfer phase. (3) The accreted mass and fastness parameter can affect the number of systems in the equilibrium state.  相似文献   

9.
Fast rotation of compact stars (at sub-millisecond period) and, in particular, their stability, are sensitive to the equation of state (EOS) of dense matter. Recent observations of XTE J1739-285 suggest that it contains a neutron star rotating at 1122 Hz. At such rotational frequency the effects of rotation on star’s structure are significant. We study the interplay of fast rotation, EOS, and gravitational mass of a sub-millisecond pulsar. We discuss the EOS dependence of spin-up to a sub-millisecond period, via mass accretion from a disk in a low-mass X-ray binary.  相似文献   

10.
考虑到混杂星既具有奇异夸克物质核,又具有中子星固体壳层的特殊结构,运用完全自洽的二级修正方法,研究了在低温极限下(T<109K)混杂星的体粘滞耗散时标,并利用该时标计算了混杂星的临界旋转频率,发现其最小值为704.42 Hz(对应1.42 ms脉冲周期).与中子星和奇异星比较,更好地解释了观测数据.  相似文献   

11.
The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of (i) decay of the surface dipole component of neutron-star magnetic fields on a timescale of (2–5) × 106 yr, in combination with (ii) spin-up of the rotation of the neutron star during a subsequent mass-transfer phase. The four known binary radio pulsars appear to fall into two different categories. Two of them, PSR 0655 + 64 and PSR 1913 + 16, have short orbital periods (<25 h) and high mass functions, indicating companion masses 0.7M⊙ (∼1 (± 0.3) M⊙ and 1.4 M⊙, respectively). The other two, PSR 0820 + 02 and PSR 1953 + 29, have long orbital periods (117d), nearly circular orbits, and low, almost identical mass functions of about 3×10-3 M⊙, suggesting companion masses of about 0.3M⊙. It is pointed out that these two classes of systems are expected to be formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (∼ 0.3 M⊙) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains in a natural way why PSR 1953 + 29 has a millisecond rotation period and PSR 0820 + 02 has not. Among the binary models proposed for the formation of the 1.5-millisecond pulsar, the only ones that appear to be viable are those in which the companion disappeared by coalescence with the neutron star. In such models the companion may have been a red dwarf of mass 0.03M⊙, a neutron star, or a massive (>0.7M⊙) white dwarf. Only in the last-mentioned case is a position of the pulsar close to the galactic plane a natural consequence. In the first-mentioned case the progenitor system most probably was a cataclysmic-variable binary in which the white dwarf collapsed by accretion.  相似文献   

12.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

13.
We systematically analyse all the available X-ray spectra of disc accreting neutron stars (atolls and millisecond pulsars) from the RXTE data base. We show that while all these have similar spectral evolution as a function of mass accretion rate, there are also subtle differences. There are two different types of hard/soft transition, those where the spectrum softens at all energies, leading to a diagonal track on a colour–colour diagram, and those where only the higher energy spectrum softens, giving a vertical track. The luminosity at which the transition occurs is correlated with this spectral behaviour, with the vertical transition at   L / L Edd∼ 0.02  while the diagonal one is at ∼0.1. Superimposed on this is the well-known hysteresis effect, but we show that classic, large-scale hysteresis occurs only in the outbursting sources, indicating that its origin is in the dramatic rate of change of mass accretion rate during the disc instability. We show that the long-term mass accretion rate correlates with the transition behaviour, and speculate that this is due to the magnetic field being able to emerge from the neutron star surface for low average mass accretion rates. While this is not strong enough to collimate the flow except in the millisecond pulsars, its presence may affect the inner accretion flow by changing the properties of the jet.  相似文献   

14.
The recent BATSE observations of the spin-up and spin-down of accreting pulsars have shown that the standard formulation for the accretion torque as proposed by Ghosh &38; Lamb may need to be revised. The observations indicate alternate spin-up and spin-down phases driven by torques of similar magnitude and typically larger than the mean torque. The variations of the torque in systems such as Cen X-3 are difficult to explain in terms of changes of the mass accretion rate. The implication is that the torque does not depend on the accretion rate as in the GL model. In this paper we argue that the observed changes in the spin rate can result from stochastic transitions between two magnetospheric states. In particular, we show that intermediate magnetospheric systems are not admissible, because of a disc-induced magnetospheric instability which exists in a star–disc magnetic interaction system. This explains why torque reversal occurs in disc accreting pulsars with similar magnitudes.  相似文献   

15.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

16.
The loss of angular momentum through gravitational radiation, driven by the excitation of r-modes, is considered for neutron stars that have rotation frequencies lower than the associated critical frequency. We find that for reasonable values of the initial amplitudes of such pulsation modes of the star, being excited at the event of a glitch in a pulsar, the total post-glitch losses correspond to a negligible fraction of the initial rise of the spin frequency in the case of Vela and older pulsars. However, for the Crab pulsar the same effect would result, within a few months, in a decrease in its spin frequency by an amount larger than its glitch-induced frequency increase. This could provide an explanation for the peculiar behaviour observed in the post-glitch relaxations of the Crab pulsar.  相似文献   

17.
We employ the supernova fallback disk model to simulate the spin evolution of isolated young neutron stars(NSs). We consider the submergence of the NS magnetic fields during the supercritical accretion stage and its succeeding reemergence. It is shown that the evolution of the spin periods and the magnetic fields in this model is able to account for the relatively weak magnetic fields of central compact objects and the measured braking indices of young pulsars. For a range of initial parameters, evolutionary links can be established among various kinds of NS sub-populations including magnetars, central compact objects and young pulsars. Thus, the diversity of young NSs could be unified in the framework of the supernova fallback accretion model.  相似文献   

18.
The effect of a neutron-proton vortex system on the rotation dynamics of neutron stars is examined. The dynamics of the motion of a two component superfluid system in the core of a neutron star yields an equation for the evolution of the pulsar's rotation period. The spin down of the star owing to energy release at the core boundary, which is associated with a contraction of the length of the neutron vortex as it moves radially and magnetic energy of the vortical cluster is released, is taken into account. Evolutionary curves are constructed for pulsars with different magnetic fields and stellar radii. For certain values of the coefficient of friction between the superfluid and normal components in the core of the neutron star, at the end of its evolution a radio pulsar may become an anomalous x-ray pulsar or a source of soft gamma radiation with a period on the order of 10 seconds.  相似文献   

19.
Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary systems and their immediate surroundings in many ways. Here we discuss some aspects of the interactions of the neutron stars with their environments that are revelaed from their X-ray emission. We discuss some recent developments involving the process of accretion onto high magnetic field neutron stars: accretion stream structure and formation, shape of pulse profile and its changes with accretion torque. Various recent studies of reprocessing of X-rays in the accretion disk surface, vertical structures of the accretion disk and wind of companion star are also discussed here. The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown them to be rather complex systems. Orbital evolution of X-ray binaries can also be carried out from timing of the X-ray eclipses and there have been some surprising results in that direction, including orbital period glitches in two X-ray binaries and possible detection of the most massive circum-binary planet around a Low Mass X-ray Binary.  相似文献   

20.
The present paper is concerned with the spin-up of low-magnetic neutron stars by the accretion of matter onto the star. Calculations have been made for the evolution of the rotation of a neutron star and applied to different stellar models. It is shown that the existence of a millisecond pulsar imposes no restriction on any of the equations of state considered. However, constraints would arise with the possible discovery of third-octave pulsars (with frequencies in excess of 1000 Hz). Predictions are made as to the distribution of bursters over the orbital periods of neutron stars (about half of these having similar orbital periods). It is demonstrated that in the case of continued accretion onto a star, after it has acquired the critical angular frequency allowing no diviation from axial symmetry, specific accretion disks can be formed with a smooth transition into a star. The specific angular momentum is computed for a neutron star for the instant of the attainment of the Oppenheimer-Volkoff limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号