首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Successful subtraction of instrumental background variations has permitted spectral analyses of two-dimensional measurement arrays of granulation brightness fluctuations at the center of the disk, arrays obtained from Stratoscope I, 1959B-flight, high-resolution frames B1551 and B3241.
  1. RMS's, uncorrected for instrumental blurring, are 0.0850 of mean intensity for B1551 and 0.0736 for B3241, somewhat higher than other determinations. These between-frame and between-investigation differences probably result from a combination of calibration errors, frame resolution differences, and, most likely, granulation pattern differences.
  2. Significant variations over each array of mean intensities and RMS's, determined for sub-arrays with dimensions in the 2500–10000 km range, indicate spatial brightness and RMS variations larger than the ‘scale’ of the granulation pattern, supporting a turbulent interpretation of photospheric convection.
  3. One-dimensional power-spectra shapes provide objective and discriminating criteria for determining granulation pattern differences and, possibly, frame resolution.
  4. Two-dimensional power spectra show small, essentially random deviations from axial symmetry which lie almost entirely within the 50% confidence limits.
  5. Spectral densities and fluctuation power spectra, computed from the two-dimensional power spectra and corrected for instrumental blurring, noise, and blemishes, have a useable radial wavenumber range nearly double that of earlier Stratoscope I analyses.
  6. Corrected RMS's obtained from the corrected fluctuation power spectra, 0.145 ± 0.046 for B1551 and 0.136 ± 0.048 for B3241, depend critically on the accuracy of the correction.
  7. The spectra's wavenumber range includes the granulation-fluctuation-producing domain but not the Kolmogoroff domain of turbulence spectra.
  相似文献   

2.
Celebrating the diamond jubilee of the Physics Research Laboratory (PRL) in Ahmedabad, India, we look back over the last six decades in solar physics and contemplate on the ten outstanding problems (or research foci) in solar physics:
  1. The solar neutrino problem
  2. Structure of the solar interior (helioseismology)
  3. The solar magnetic field (dynamo, solar cycle, corona)
  4. Hydrodynamics of coronal loops
  5. MHD oscillations and waves (coronal seismology)
  6. The coronal heating problem
  7. Self-organized criticality (from nanoflares to giant flares)
  8. Magnetic reconnection processes
  9. Particle acceleration processes
  10. Coronal mass ejections and coronal dimming
The first two problems have been largely solved recently, while the other eight selected problems are still pending a final solution, and thus remain persistent Challenges for Solar Cycle 24, the theme of this jubilee conference.  相似文献   

3.
Using the Baranger-Mozer method, we explore the possibility of diagnosing the flare plasma of forbidden Hei lines, that permits the determination of the plasma oscillation frequency and noise level. Examination of the Hei lines observed in solar flare has led us to conclude that:
  1. the appearance of satellites of forbidden components in the flares spectrum, due to turbulent electric fields, is the most probable for Hei 3819.606 Å lines;
  2. the Baranger-Mozer method is more sensitive to the high-frequency component of turbulent fields than to the low-frequency ones;
  3. the upper limit of the turbulent oscillation level in flares is evaluated.
In the spectrum of the solar flare of 26 September, 1963 we detected satellites of the forbidden component of the 3820 Å line and used its relative intensity to derive the level of low-frequency oscillations (~1.5 kVcm-1).  相似文献   

4.
The properties of rapidly changing inhomogeneities visible in the H and K lines above sunspot umbrae are described. We find as properties for these ‘Umbral Flashes’:
  1. A lifetime of 50 sec. The light curve is asymmetrical, the increase is faster than the decrease in brightness.
  2. A diameter ranging from the resolution limit up to 2000 km.
  3. A tendency to repeat every 145 sec.
  4. A ‘proper motion’ of 40 km/sec generally directed towards the penumbra.
  5. A Doppler shift of 6 km/sec.
  6. A magnetic field of 2100 G.
  7. A decrease in this field of 12 G/sec. This decrease is probably related to the flash motion.
  8. At any instant an average of 3–5 flashes in a medium-sized umbra. A weak feature often persists in the umbra after the flash. This post-flash structure initially shows a blue shift, but 100–120 sec after the flash, it shows a rapid red shift just before the flash repeats.
  相似文献   

5.
Evening twilight airglow emissions of OH (7,2) band and Li 6708 Å are observed by Dunn-Manring type photometer and following important results are obtained.
  1. Intensity of OH (7,2) and Li (6708 Å) decrease exponentially during evening twilight period.
  2. OH (7,2) band covaries with Li (6708 Å) during evening twilight period.
  3. Empirical equations of OH (7,2) band with time is obtained.
  4. Possible explanations of such type of variations is also presented.
  相似文献   

6.
We report the results of the application of our approach to study the behavior of solar activity in the past, where:
  • When reconstructing the variations of solar activity, geomagnetic parameters, and the interplanetary magnetic field in the past we select a sequence of increasing time scales, which can be naturally represented by the potentials of available observational data. We select a total of four time scales: 150–200 years, 400 years, 1000 years, and 10000 years.
  • When constructing the series of each successive (in terms of length) time scale we use the data of the previous time scale as reference data.
  • We abandon, where possible, the series of traditional statistical parameters in favor of the series of physical parameters.
  • When deriving the relations between any parameters of solar activity, geomagnetic disturbance, and the interplanetary magnetic field, we take into account the differential nature of relations on different time scales. To this end, we use the earlier proposed MSR and DPS methods.
  • To verify the resulting reconstructions, we use the “principle of witnesses”, which uses independent (in some cases, indirect) information as initial data.
  •   相似文献   

    7.
    Shock remagnetization is a significant mode of alteration of the intensity and direction of magnetization in planetary crustal rocks subjected to the dynamic and thermochemical effects associated with meteorite impact. Shock remagnetization will take place almost instantaneously during and following the transient shock episode, and over longer times depending on residual temperature effects associated with shock heating and the production of impact melt. Remagnetization will follow certain demagnetization effects. The following transitions and residual effects will result in remagnetization of planetary crustal material:
    1. First order reversible crystallographic transitions in bodycentered cubic iron-nickel alloys.
    2. Second order Curie temperature transitions in face-centered cubic iron-nickel alloys.
    3. Shock induced uniaxial anisotropy due to magnetoelasstic coupling of magnetic vectors to the shock wave.
    4. Shock melting of iron containing silicates.
    5. Subsolidus reduction and FeO decomposition.
    6. Partial ther moremanence due to post-shock temperature.
    7. Total thermoremanence due to post-shock temperature.
    8. Production of a superparamagnetic distribution of iron which is sensitive to surface temperature fluctuation.
    9. Thermal effects in metal and alloy phases.
    Lunar breccia and soil samples are generally more reduced than crystalline rocks and some of th's reduction is subsolidus probably associated with the transient thermal effects due to meteorite impact in teh porous reglith.  相似文献   

    8.
    We examine the propagation of Alfvén waves in the solar atmosphere. The principal theoretical virtues of this work are: (i) The full wave equation is solved without recourse to the small-wavelength eikonal approximation (ii) The background solar atmosphere is realistic, consisting of an HSRA/VAL representation of the photosphere and chromosphere, a 200 km thick transition region, a model for the upper transition region below a coronal hole (provided by R. Munro), and the Munro-Jackson model of a polar coronal hole. The principal results are:
    1. If the wave source is taken to be near the top of the convection zone, where n H = 5.2 × 1016 cm?3, and if B = 10.5 G, then the wave Poynting flux exhibits a series of strong resonant peaks at periods downwards from 1.6 hr. The resonant frequencies are in the ratios of the zeroes of J 0, but depend on B , and on the density and scale height at the wave source. The longest period peaks may be the most important, because they are nearest to the supergranular periods and to the observed periods near 1 AU, and because they are the broadest in frequency.
    2. The Poynting flux in the resonant peaks can be large enough, i.e. P ≈ 104–105 erg cm?2s?1, to strongly affect the solar wind.
    3. ¦δv¦ and ¦δB¦ also display resonant peaks.
    4. In the chromosphere and low corona, ¦δv ≈ 7–25 kms?1 and ¦δB¦ ≈0.3–1.0 G if P ≈104-105 erg cm?2s?1.
    5. The dependences of ¦δv¦ and ¦δB¦ on height are reduced by finite wavelength effects, except near the wave source where they are enhanced.
    6. Near the base, ¦δB¦ ≈ 350–1200 G if P ~- 104–105. This means that nonlinear effects may be important, and that some density and vertical velocity fluctuations may be associated with the Alfvén waves.
    7. Below the low corona most wave energy is kinetic, except near the base where it becomes mostly magnetic at the resonances.
    8. ?0 < δv 2 > v A or < δB 2 > v A/4π are not good estimators of the energy flux.
    9. The Alfvén wave pressure tensor will be important in the transition region only if the magnetic field diverges rapidly. But the Alfvén wave pressure can be important in the coronal hole.
      相似文献   

    9.
    The natural waves observed within magnetospheres are often emitted over a very narrow spectral range. They thus can interact coherently with the charged particles forming the weakly collisional magnetospheric plasmas. In this review some aspects of these quasi-coherent Wave Particle Interactions, usually known as trapping processes, are underlined. A particular emphasis is here put on the situation effectively encountered within natural plasmas. Hence, the effects of plasma inhomogeneities on the resonant WPI are thoroughly studied. We focus on three effects:
    1. The inhomogeneity of the medium changes the wave number and correspondingly the relative phase between the wave and the particle's motion. Thus, resonant conditions cannot be fulfilled over a large wave path, which tends to decrease the efficiency of the WPI. On the other hand, this effect leads a monochromatic wave to interact with a larger set of charged particles, which tends to restore a quasi linear-like diffusion process.
    2. Even when trapping occurs, the inhomogeneity changes the saturation level of the kinetic instabilities.
    3. Trapping can then be an efficient acceleration process.
      相似文献   

    10.
    Two-dimensional distributions of kinetic temperature, density and turbulent velocity are obtained for four quiescent prominences observed at the Peruvian eclipse of 12 November, 1966.
    1. The kinetic temperature derived from line widths is around 6000–7000 K in the central part of prominences and rises to 12000K in both edges and possibly in the top of prominences.
    2. The turbulent velocity shows a similar tendency, being 7–9 km/sec in the central part and ≈ 20 km/sec in the outer part. The turbulent velocity also increases slowly towards higher heights in the prominence.
    3. The electron density derived both from the Stark effect and the intensity ratio of the continuous spectra turns out to be about 1010.2–1010.6 cm?3 in the central portion of two prominences.
    4. From the width and the intensity, neutral helium lines are shown to originate in the same region as hydrogen and metallic lines where the kinetic temperature goes down to 6000 K. This indicates that neutral helium is emitted after the ionization due to UV radiation from the corona and the transition region.
      相似文献   

    11.
    We have investigated how the gradients of temperature and expansion velocities will change the emergent profiles from an extended medium in spherical symmetry. Variation of the source function and expansion velocities are assumed. The following variations of temperature are employed:
    1. T(r) ; T0 (isothermal case)
    2. T(r) ; T0(r/r0)1/2
    3. T(r) ; T0(r/r0)-1
    4. T(r) ; T0(r/r0)-2
    5. T(r) ; T0(r/r0)-3
    The profiles calculated present an interesting feature of broadening.  相似文献   

    12.
    The properties of small (< 2″) moving magnetic features near certain sunspots are studied with several time series of longitudinal magnetograms and Hα filtergrams. We find that the moving magnetic features:
    1. Are associated only with decaying sunspots surrounded entirely or in part by a zone without a permanent vertical magnetic field.
    2. Appear first at or slightly beyond the outer edge of the parent sunspot regardless of the presence or absence of a penumbra.
    3. Move approximately radially outward from sunspots at about 1 km s?1 until they vanish or reach the network.
    4. Appear with both magnetic polarities from sunspots of single polarities but appear with a net flux of the same sign as the parent sunspot.
    5. Transport net flux away from the parent sunspots at the same rates as the flux decay of the sunspots.
    6. Tend to appear in opposite polarity pairs.
    7. Appear to carry a total flux away from sunspots several times larger than the total flux of the sunspots.
    8. Produce only a very faint emmission in the core of Hα.
    A model to help understand the observations is proposed.  相似文献   

    13.
    Three different numerical techniques are tested to determine the number of integrals of motion in dynamical systems with three degrees of freedom.
    1. The computation of the whole set of Lyapunov Characteristic Exponents (LCE).
    2. The triple sections in the configurations space.
    3. The Stine-Noid box-counting technique.
    These methods are applied to a triple oscillator with coupling terms of the third order. Cases are found for which one effective integral besides the Hamiltonian subsists during a very long time. Such orbits display simultaneously chaotic and quasi-periodic motion, according to which coordinates are considered. As an application, the LCE procedure is applied to a triaxial elliptical galaxy model. Contrary to similar 2-dimensional systems, this 3-dimensional one presents noticeable zones in the phase space without any non-classical integral.  相似文献   

    14.
    An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
    1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
    2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
    3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
    4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
    5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
    6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
    7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
    8. No unusual velocities are observed in the photosphere at flare time.
      相似文献   

    15.
    This paper is primarily concerned with the questions of models and the mechanisms of radio emission for pulsars, the polarization of this radiation and related topic. For convenience and to provide a more complete picture of the problems involved, a short summary of the data on pulsars is also given. Besides the introduction, the paper contains the following sections:
    1. Some Facts about Pulsars.
    2. The Astrophysical Nature of Pulsars.
    3. Coherent Mechanisms of Radio Emission from Pulsars.
    4. Models of Pulsars: Magnetic, Pulsating White Dwarfs and Neutron Stars.
    5. The Polarization of the Radio Emission from Pulsars.
    6. A Synthesized Model of Pulsars — Magnetic, Pulsating and Rotating Neutron Stars.
    7. Concluding Remarks.
      相似文献   

    16.
    The Transition Region and Coronal Explorer (TRACE) gave us the highest EUV spatial resolution and the Ramaty High Energy Solar Spectrometric Imager (RHESSI) gave us the highest hard X-ray and gammaray spectral resolution to study solar flares. We review a number of recent highlights obtained from both missions that either enhance or challenge our physical understanding of solar flares, such as:
    1. Multi-thermal Diagnostic of 6.7 and 8.0 keV Fe and Ni lines
    2. Multi-thermal Conduction Cooling Delays
    3. Chromospheric Altitude of Hard X-Ray Emission
    4. Evidence for Dipolar Reconnection Current Sheets
    5. Footpoint Motion and Reconnection Rate
    6. Evidence for Tripolar Magnetic Reconnection
    7. Displaced Electron and Ion Acceleration Sources.
      相似文献   

    17.
    A study of ephemeral active regions (ER) identified on good quality full-disk magnetograms reveals:
    1. On the average 373 and 179 ER were present on the Sun in 1970 and 1973 respectively. The number varies with the solar cycle.
    2. The median lifetime of ER depends on observation quality and selection rules but is estimated as about 12 hr for our data.
    3. The latitude distribution is very broad but not uniform. The distribution peaks near the equator and shows variations similar to distributions of large active regions.
    4. The longitude distribution is essentially homogeneous.
    5. The spatial orientation of ER is almost random. In 1973 there is a hint of an excess of new cycle orientations at high latitudes.
    A comparison of parameters of ER and regular active regions suggests that ER are the small-scale end of a broad spectrum of active regions. The role of ER in the light of present theories of solar activity is investigated but is not yet clear. Heating of the chromosphere and corona may be significantly affected by ER.  相似文献   

    18.
    Photoelectric measurements of Doppler shifts of various Fraunhofer lines obtained with the Capri magnetograph were analysed. The height dependence of the supergranular and oscillatory motions, as well as the two dimensional structure of these velocity fields is investigated. The most interesting results are the following:
    1. The oscillatory and supergranular motions are still clearly present in very deep photospheric layers as detected e.g. by means of the Ci line at 5380.3 Å.
    2. Whereas the vertical motions (both of oscillation and supergranulation) increase with height, the horizontal component of the supergranular flow is found to be decreasing slightly.
    3. Aperiodic horizontal motions are observed in the photospheric layers, which are probably connected with the process of excitation of the oscillatory field.
    4. There is no simple way of describing the oscillatory field in terms of independently oscillating ‘cells’, since the two-dimensional pattern changes its appearance drastically already in a fraction of one oscillation period.
    5. The correlation obtained by previous observers between vertical stationary motions, the chromospheric network and magnetic fields in particular is confirmed.
      相似文献   

    19.
    N. Mein 《Solar physics》1977,52(2):283-292
    In order to precise previous results about wave propagation in the quiet chromosphere (N. Mein and P. Mein, 1976), we study the behaviour of Doppler shifts and intensity fluctuations in 3 lines of Ca ii. We use the same observation as in our previous work, that is to say a sequence of spectra lasting 27 mn, taken at Sacramento Peak Observatory solar tower. Results can be summarized as follows:
    1. Phase-lag between intensity fluctuations and dopplershifts is always near 90° in the Ca ii lines, even for frequencies as high as 15 mHz, and whatever is the location in the chromospheric network.
    2. Magneto-acoustic waves propagating vertically in a vertical or horizontal magnetic field could account for the observations only if they were, on one hand reflected in the upper atmosphere, on the other hand propagating with a very high sound or Alfvén speed. The lower limit for the speed (70 km s-1) does not seem to be realistic. Oblique waves could be investigated for better agreement.
      相似文献   

    20.
    Evidence is discussed showing that a representative solar flare event comprises three or more separate but related phenomena requiring separate mechanisms. In particular it is possible to separate the most energetic effect (the interplanetary blast) from the thermal flare and from the rapid acceleration of particles to high energies. The phenomena are related through the magnetic structure characteristic of a composite flare event, being a bipolar surface field with most of its field lines ‘closed’. Of primary importance are helical twists on all scales, starting with the ‘flux rope’ of the spot pair which was fully twisted before it emerged. Subsequent untwisting by the upward propagation of an Alfvén twist wave provides the main flare energy.
    1. The interplanetary blast model is based on subsurface, helically twisted flux ropes which erupt to form spots and then transfer their twists and energy by Alfvén-twist waves into the atmospheric magnetic fields. The blast is triggered by the prior-commencing flash phase or by a coronal wave.
    2. The thermal flare is explained in terms of Alfvén waves travelling up numerous ‘flux strands’ (Figure 3) which have frayed away from the two flux ropes. The waves originate in interaction (collisions, bending, twisting, rubbing) between subsurface flux strands; the sudden flash is caused by a collision. The classical twin-ribbon flare results from the collision of a flux rope with a tight bunch of S-shaped flux strands.
    3. The impulsive acceleration of electrons (hard X-ray, EUV, Hα and radio bursts) is tentatively attributed to magnetic reconnection between fields in two parallel, helically twisted flux strands in the low corona.
    4. Flare (Moreton) waves in the corona have the same origin as the interplanetary blast. Sympathetic flares represent only the start of enhanced activity in a flare event already in the slow phase. Filament activation also occurs during the slow phase as twist Alfvén waves store their energy in the atmosphere.
    5. Flare ejecta are caused by Alfvén waves moving up flux strands. Surges are attributed to packets of twist Alfvén waves released into bundles of flux strands; the waves become non-linear and drive plasma upwards. Spray-type prominences result from accumulations of Alfvén wave energy in dome-shaped fields; excessive energy density eventually explodes the field.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号