首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对载波相位观测值中出现周跳的问题及北斗卫星导航系统全星座播发三频信号的现状,提出一种三频相位电离层残差二阶历元差分(STPIR)的算法,克服了传统电离层残差法受观测数据采样间隔影响较大的问题,联合MW组合观测量进行周跳探测又可避免各自的探测盲区。两种组合观测量均很好地削弱了电离层延迟项的影响,联立方程组进行周跳求解时,直接取整即可得到周跳值。通过北斗三频实测数据验证,提出的组合方法在观测数据采样间隔较大时,可以准确探测出所有周跳,并有效修复。  相似文献   

2.
首先分析了矩阵变换、无几何CIR、几何CIR、组合观测量PAR、原始观测量PAR五种模糊度解算方法的原理;然后采用短基线北斗三频实测数据对每种方法进行测试和分析比较。结果表明:短基线条件下,无几何CIR算法和矩阵变换算法受电离层延迟和观测噪声的影响较大,模糊度固定成功率比较低,不适用于北斗实测数据;几何CIR算法和组合观测量PAR算法采用组合观测量会放大噪声水平,部分历元的模糊度固定出现错误;原始观测量PAR模糊度固定成功率最高,在本次算例中达到100%。  相似文献   

3.
精密单点定位中双频GPS数据的周跳探测与修复   总被引:1,自引:0,他引:1       下载免费PDF全文
周跳的探测与修复,特别是小周跳的探测是实现GPS高精度实时定位的关键技术基础之一。分析了非差相位观测值线性组合模式,比较了几种周跳修复的方法,得出宽巷和电离层组合方法更适用于精密单点定位中双频GPS数据的周跳探测和修复。通过实例分析,证明该方法能够有效地探测并修复周跳。  相似文献   

4.
一种双频数据的周跳探测和修复方法的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
刘超  王坚  许长辉 《海洋测绘》2009,29(6):9-13
研究了伪距/载波组合和电离层残差探测和修复周跳。利用伪距/载波组合探测和修复6—8周以上的周跳,对修复后的数据进行电离层残差探测,分离发生周跳历元的电离层残差跳变量,得到8周以内的周跳量并修复,实现了30s以内采样间隔任意整周周跳的探测和修复。实验证明此方法是可行的。  相似文献   

5.
Precise, long-range GPS kinematic positioning to centimeter accuracy requires that carrier phase ambiguities be resolved correctly during an initialization period, and subsequently to recover the “lost" ambiguities in the event of a cycle slip. Furthermore, to maximize navigational efficiency, ambiguity resolution and carrier phase-based positioning need to be carried out in real-time. Due to the presence of the ionospheric signal delay, satellite orbit errors, and the tropospheric delay, so-called absolute ambiguity resolution “on-the-fly” for long-range applications becomes very difficult, and largely impossible. However, all of these errors exhibit a high degree of spatial and temporal correlation. In the case of short-range ambiguity resolution, because of the high spatial correlation, their effect can be neglected, but their influence will dramatically increase as the baseline length increases. On the other hand, between discrete trajectory epochs, they will still exhibit a large degree of similarity for short time spans. In this article, a method is described in which similar triple-differenced observables formed between one epoch with unknown ambiguities and another epoch with fixed ambiguities can be used to derive relative ambiguity values, which are ordinarily equal to zero (or to the number of cycles that have slipped when loss-of-lock occurred). Because of the temporal correlation characteristics of the error sources, the cycle slips can be recovered using the proposed methodology. In order to test the performance of this algorithm an experiment involving the precise positioning of an aircraft, over distances ranging from a few hundred meters up to 700 kilometres, was carried out. The results indicate that the proposed technique can successfully resolve relative ambiguities (or cycle slips) over long distances in an efficient manner that can be implemented in real-time.  相似文献   

6.
Precise, long-range GPS kinematic positioning to centimeter accuracy requires that carrier phase ambiguities be resolved correctly during an initialization period, and subsequently to recover the “lost" ambiguities in the event of a cycle slip. Furthermore, to maximize navigational efficiency, ambiguity resolution and carrier phase-based positioning need to be carried out in real-time. Due to the presence of the ionospheric signal delay, satellite orbit errors, and the tropospheric delay, so-called absolute ambiguity resolution “on-the-fly” for long-range applications becomes very difficult, and largely impossible. However, all of these errors exhibit a high degree of spatial and temporal correlation. In the case of short-range ambiguity resolution, because of the high spatial correlation, their effect can be neglected, but their influence will dramatically increase as the baseline length increases. On the other hand, between discrete trajectory epochs, they will still exhibit a large degree of similarity for short time spans. In this article, a method is described in which similar triple-differenced observables formed between one epoch with unknown ambiguities and another epoch with fixed ambiguities can be used to derive relative ambiguity values, which are ordinarily equal to zero (or to the number of cycles that have slipped when loss-of-lock occurred). Because of the temporal correlation characteristics of the error sources, the cycle slips can be recovered using the proposed methodology. In order to test the performance of this algorithm an experiment involving the precise positioning of an aircraft, over distances ranging from a few hundred meters up to 700 kilometres, was carried out. The results indicate that the proposed technique can successfully resolve relative ambiguities (or cycle slips) over long distances in an efficient manner that can be implemented in real-time.  相似文献   

7.
Yang Gao  Zuofa Li 《Marine Geodesy》1999,22(3):169-181
This article investigates the problem of cycle slip detection and ambiguity resolution using dual-frequency GPS data. Several algorithms are proposed and described. F or cycle slip detection, three L1/L2 observable combinations have been integrated to formulate a new algorithm for cycle slip detection. For ambiguity resolution, both widelane and narrowlane ambiguity resolution algorithms are presented, but the focus is on the narrowlane ambiguity resolution. Numerical results are included to evaluate the performance of the proposed algorithms, which have shown that cycle slips can be effectively detected and the narrowlane ambiguities can be resolved almost instantaneously after successful determination of the widelane ambiguities.  相似文献   

8.
载波相位测量中小周跳的探测与修复一直是高精度GPS定位研究中的热点领域。分析了L1和L2载波相位观测值的关系,通过相邻历元的相位观测值求差来探测周跳,并结合伪距差分约束条件来确定及修复周跳。结合实例分析,证明该方法可以有效地探测并修复周跳,并通过Matlab编程实现了算法的程序化。  相似文献   

9.
Distance-related errors complicate the resolution of real-time ambiguity in medium–long baseline marine surveys. Therefore, detection and recovery of cycle slips in real time is required to ensure high accuracy of global navigation satellite system positioning and navigation in marine surveys. To resolve this, an improved method was presented, where linear combinations of the triple-differenced (TD) between carriers L1 and L2 were formed for a wide lane and free ionosphere. To overcome severe ill-conditioned problems of the normal equation, the Tikhonov regularization method was used. The construction of a regularized matrix by combining a priori information of known coordinates of reference stations, followed by the determination of the corresponding regularized parameter are suggested. A float solution was calculated for the TD ambiguity. The search cycle slip (TD integer ambiguity) was obtained using the least-squares ambiguity decorrelation adjustment (LAMBDA) method. Using our method, cycle slips of several reference station baselines with lengths of a few hundred to one thousand kilometers were detected in real time. The results were consistent with professional software, with a success rate of 100%.  相似文献   

10.
基于三频观测值组合原理,在周跳探测与修复过程中提出了一种新的组合方法,即利用一组伪距/相位组合,一组无几何组合以及一组系数之和为1的几何组合,通过历元间差分,分步求取周跳估值。实验证明,该方法无不敏感周跳,并能够实时有效探测并修复周跳。  相似文献   

11.
联合M-W组合和电离层残差组合的周跳探测与修复方法   总被引:1,自引:0,他引:1  
针对电离层残差法和TyrboEdit方法在周跳探测与修复方面的不足,提出了联合利用M-W组合观测值和电离层残差组合观测值进行周跳处理的方法.通过对高采样机载GPS动态测量数据的计算分析,提出的方法可探测出电离层残差法和TurboEdit方法各自不能探测的周跳,同时联合利用两种组合进行周跳偏差的估计,可以得到精确的周跳估...  相似文献   

12.
周跳的探测与修复一直是GPS精密定位数据处理中的一个十分重要的任务。介绍了电离层残差法探测周跳的原理,并通过伪距差分约束法来确定和修复周跳,通过Matlab编制了相应程序,并结合实例分析了其在不同采样率下探测与修复周跳的效果,且得到了一些有益的结论。  相似文献   

13.
The combination of a high-frequency ocean surface radar and a tsunami detection method should be assessed as the onshore-offshore distribution of tsunami detection probability, because the probability will vary in accordance with the signal-to-noise ratio (SNR) and the tsunami magnitude in addition to the radar system specifications. Here, we statistically examine the tsunami detection distance based on virtual tsunami observation experiments by using signals received by a high-frequency radar in February 2014 installed on the southern coast of Japan and numerically simulated velocities induced by a Nankai Trough earthquake. In the experiments, the Doppler frequencies associated with the simulated velocities were superimposed on the receiving signals of the radar, and the radial velocities were calculated from the synthesized signals by the fast Fourier transform. Tsunami arrival was then detected based on the temporal change in the cross-correlation of the velocities, before and after tsunami arrival, between two points 3 km apart along a radar beam. We found that the possibility of tsunami detection primarily depends on the kinetic energy ratio between tsunami current and background current velocities. The monthly average detection probability is over 90% when the energy ratio exceeds 5 (offshore distance: 9 km ≤ L ≤ 36 km) and reduces to 50% when the energy ratio is approximately 1 (L = 42 km) over the shelf slope. The ratio varied with the background current physics and SNR, which was mainly affected by ocean surface wave heights and ionospheric electron density.  相似文献   

14.
针对海上条件下,对于实时定位应用,实时数据流无法下载的情况,文中提出一种基于RBF神经网络的卫星钟差预报算法,给出基函数的中心、方差以及隐含层到输出层的权值的计算方法,采用滑动窗口的方法,用样本数据训练后的网络预测下一个历元的钟差值,依次往后训练网络直到预测完整个时间段,通过实验验证了算法的可用性。短期预报中,GPS预报精度在1 ns以下,BDS和GLONASS在2~3 ns左右;长期预报中,GPS预报精度在几十纳秒左右,而BDS和GLONASS在几百纳秒左右,文中给出了相应的结果分析。  相似文献   

15.
Unrepresentative subsamples can be obtained from a sedimentary sample through repeated subdivision when using a mechanical microsplitter. Physical biases are often compounded by repetition and can result in wide variations among the estimates computed from the relative proportion of foraminifera of a given species. A new microsplitter, designed on a new principle, has been built to separate small representative subsamples. The device is based on the uniform distribution of unconsolidated sediments suspended in water. A subsample of the desired size is obtained by collecting sediment from an appropriate sedimentation area. Operation of this sampler is rapid and convenient and requires only one step, thus eliminating sampling biases introduced by repeated operations with other splitters. This new device was tested and found to be superior to the Otto Microsplitter according to some statistical goodness-of-fit tests conducted on the series.  相似文献   

16.
The third order triple-frequency wave load on fixed axisymmetric bodies by monochromatic waves is considered within the frame of potential theory. Waves are assumed to be weak non-linearity and a perturbation method is used to expand velocity potentials and wave loadings into series according to a wave steepness of kA. Integral equation method is used to compute velocity potentials up to second order in wave steepness. The third order triple-frequency wave loads are computed by an indirect method and an efficient method is applied to form the third order forcing term on the free surface quickly. The method can be used to compute third order triple-frequency surge force, heave force and pitch moment on any revolution bodies with vertical axes. The comparison with Malenica and Molin's results is made on surge force on a uniform cylinder, and comparison with experimental results is made on third order surge force, heave force and pitch moment on a truncated cylinder. More numerical computations are carried out for third order forces and moments on a uniform cylinder, truncated cylinders and a hemisphere.  相似文献   

17.
基于多测站观测数据,采用伪距相位差组合和伪距多径组合方法,分析了GPS、Galileo、BDS和QZSS 4个系统伪距测量噪声和多径误差,比较了各系统内部信号数据质量以及系统间兼容信号数据质量。结果表明:GPS系统中L2C信号伪距测量精度要优于L2信号;Galileo系统中E5信号伪距测量精度最优,其E1和E5a信号伪距测量精度分别优于GPS/QZSS L1和L5信号;QZSS信号伪距测量精度与GPS信号基本一致;BDS系统三频信号伪距多径中均存在与高度角相关的系统性偏差,最大可达1m,且其三类卫星伪距测量精度有所差异,相同高度角条件下,GEO卫星伪距测量精度最优,IGSO卫星次之,MEO卫星最差。  相似文献   

18.
针对海洋测高卫星未来发展趋势,提出了Ku/Ka/C三频高度计进行组合测距的设想。给出了高度计相位中心至海面距离的随机误差模型,分析表明电离层延迟改正是影响海面高测量分辨率和精度的重要因素。其次利用典型电离层参数计算表明电离层2阶以上项对高度计测距的影响在毫米级以下,可忽略其影响。通过计算分析,在1Hz采样且不滤波条件下,Ka/C组合改正电离层1阶项精度可优于3mm,基本消除电离层的影响,测距总精度达到3.5cm。通过Ku/C/Ka三频组合测距误差分析,三频电离层改正残余误差比双频改正更大,因此如果采用三频组合测距体制,则建议在数据处理中采取Ku/C、Ka/C组合形式改正电离层,这种体制可充分利用各频段特点,进一步提高宽阔海域、冰区、近海区域的海面测量精度和有效数据比例。  相似文献   

19.

To help the decision making regarding where to locate new observation instruments on the seafloor, we examined the detectability of interplate earthquakes and slow slips in the Nankai subduction thrust in Japan using seafloor observation instruments. Here, the detectability is defined as the smallest magnitude of the interplate fault slip detected by the assumed observation points based on crustal deformation simulation. In the detectability analyses, we considered the effect of sensor drifts that are particularly associated with seafloor observations. In addition, we introduced high-resolution three-dimensional (3D) finite element modeling of crustal deformation to consider the effect of the topography and 3D heterogeneous crustal structure around the Nankai Trough. The results of the detectability analyses show that introducing new seafloor stations for tilt observation in the Nankai region should increase the detectability of small- or medium-sized interplate earthquakes and slow slips significantly. Based on the obtained results, we also discuss the advantage of both the existing and the new observation instruments in detecting interplate fault slips.

  相似文献   

20.
Comparing to single BeiDou Navigation Satellite System (BDS) Precise Point Positioning (PPP), a method which can more quicklydetermine the ambiguity parameters of BDS through applying the contribution of GPS observations is proposed and analyzed in this article. The numerical examples and analysis show that the ionosphere-free ambiguities of BDS satellites can be determined and converged more quickly because of the contribution of GPS observations. The average improvement of the convergent speed of positioning is 18.5% and its positioning accuracy in N, E, and U components are improved by 29.4, 30.3, and 34.4%, respectively, with the contribution of the a priori coordinates obtained from GPS observations. This method is useful for single BDS system positioning when there is a priori information provided by GPS or other sensors which be replaced by and can be applied at the beginning of the computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号