首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More and more observational hints of quark stars are proposed these years though pulsars are considered conventionally to be normal neutron stars. The existence of low-mass quark stars is a direct consequence of the possibility that pulsar-like stars are actually quark stars, because of the ability that quark matter can confine itself by color interaction. After a brief introduction to the study of quark stars, the various astrophysical implications of low-mass quark stars are investigated. It is addressed that some of the transient unidentified γ -ray sources are probably merging quark stars. The observability of low-mass quark stars is discussed.  相似文献   

2.
A total of 85 CP stars of various types are identified among 814 members of the OriOB1 association. The fraction of CP stars decreases with age for different cluster subgroups: from 15.1% in the youngest subgroup (b) to 7.7% in the oldest one (a). Individual comments are provided for each of the 85 stars, where we analyze the physical parameters and distance of the objects. All the 23 Am stars identified as a result of this study are found to have heliocentric distances between 100 and 300 pc and appear not to be members of the OrionOB1 association, but foreground objects. We identified 59 Bp stars, which account for 13.4% of the total number of B-type stars in the association. The fraction of peculiar B-type stars in the OriOB1 association is found to be twice higher than that of peculiar A-type stars. The same is true for field stars. The association contains 22 magnetic stars, out of which 21 are Bp stars and only one is an Ap star. Seventeen of these stars are objects with anomalous helium lines. Magnetic stars show a well-defined tendency to concentrate in the central region of the association (in Orion’s Belt), which contains most of these objects. No significant differences are found between the field strengths in the B-type stars of the association and Bp-type field stars, although there is a noticeable trend for He-rich stars to have stronger fields compared to He-weak stars. We identified 17 binaries, which make up 20% of the total number of peculiar stars studied, which is the standard ratio for CP stars. Except for one HgMn star (HD35548), the radial velocities and proper motions of our identified objects are consistent with the corresponding parameters of normal B-type stars.  相似文献   

3.
A sample of 1497 carbon stars in the Large Magellanic Cloud (LMC) has been observed in the red part of the spectrum with the 2dF facility on the Anglo-Australian Telescope. Of these, 156 have been identified as J-type (i.e. 13C-rich) carbon stars using a technique which provides a clear distinction between J stars and the normal N-type carbon stars that comprise the bulk of the sample, and yields few borderline cases. A simple two-dimensional classification of the spectra, based on their spectral slopes in different wavelength regions, has been constructed and found to be related to the more conventional c and j indices, modified to suit the spectral regions observed. Most of the J stars form a photometric sequence in the   K − ( J − K )  colour–magnitude diagram, parallel to and 0.6 mag fainter than the N-star sequence. A subset of the J stars (about 13 per cent) are brighter than this J-star sequence; most of these are spectroscopically different from the other J stars. The bright J stars have stronger CN bands than the other J stars and are found strongly concentrated in the central regions of the LMC. Most of the rather few stars in common with Hartwick and Cowley's sample of suspected CH stars are J stars. Overall, the proportion of carbon stars identified as J stars is somewhat lower than has been found in the Galaxy. The Na D lines are weaker in the LMC J stars than in either the Galactic J stars or the LMC N stars, and do not seem to depend on temperature.  相似文献   

4.
Stellar winds appear as a persistent feature of hot stars, irrespective of their wide range of different luminosities, masses, and chemical composition. Among the massive stars, the Wolf–Rayet types show considerably stronger mass loss than the O stars. Among hot low-mass stars, stellar winds are seen at central stars of planetary nebulae, where again the hydrogen-deficient stars show much stronger winds than those central stars with “normal” composition. We also studied mass-loss from a few extreme helium stars and sdOs. Their mass-loss rate roughly follows the same proportionality with luminosity to the power 1.5 as the massive O stars. This relation roughly marks a lower limit for the mass loss from hot stars of all kinds, and provides evidence that radiation pressure on spectral lines is the basic mechanism at work. For certain classes of stars the mass-loss rates lie significantly above this relation, for reasons that are not yet fully understood. Mass loss from low-mass stars may affect their evolution, by reducing the envelope mass, and can easily prevent diffusion from establishing atmospheric abundance patterns. In close binary systems, their winds can feed the accretion onto a companion.  相似文献   

5.
The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey “VISTA Variables in the Vía Lácteá (VVV)” discovered several new clusters hosting massive stars. We present an analysis of massive stars in four of these new clusters. Our aim is to provide constraints on stellar evolution and to better understand the relation between different types of massive stars. We use the radiative transfer code CMFGEN to analyse K-band spectra of twelve stars with spectral types ranging from O and B to WN and WC. We derive the stellar parameters of all targets as well as surface abundances for a subset of them. In the Hertzsprung–Russell diagram, the Wolf–Rayet stars are more luminous or hotter than the O stars. From the log(C/N)–log(C/He) diagram, we show quantitatively that WN stars are more chemically evolved than O stars, WC stars being more evolved than WN stars. Mass loss rates among Wolf–Rayet stars are a factor of 10 larger than for O stars, in agreement with previous findings.  相似文献   

6.
《New Astronomy》2007,12(3):165-168
We derive the bulk viscous damping timescale of hybrid stars, neutron stars with quark matter core. The r-mode instability windows of the stars show that the theoretical results are consistent with the rapid rotation pulsar data, which may give an indication for the existence of quark matter in the interior of neutron stars. Hybrid stars instead of neutron or strange stars may lead to submillisecond pulsars.  相似文献   

7.
The energy distribution curves of eleven Ap stars, three Am stars, four normal A stars and one F0 V magnetic star have been obtained between 478 nm and 680 nm. For four of the Ap stars, two Am stars and all the four normal A stars, the effective temperatures are believed to have been estimated for the first time. For the rest, these estimates are expected to be an improvement over previously available values.It is concluded that the Ap and Am stars are not much different from the normal A stars in so far as their temperatures are concerned.  相似文献   

8.
We report the discovery of five massive Wolf–Rayet (WR) stars resulting from a programme of follow-up spectroscopy of candidate emission-line stars in the Anglo-Australian Observatory United Kingdom Schmidt Telescope (AAO/UKST) Southern Galactic Plane Hα survey. The 6195–6775 Å spectra of the stars are presented and discussed. A WC9 class is assigned to all five stars through comparison of their spectra with those of known late-type WC stars, bringing the known total number of Galactic WC9 stars to 44. Whilst three of the five WC9 stars exhibit near-infrared (NIR) excesses characteristic of hot dust emission (as seen in the great majority of known WC9 stars), we find that two of the stars show no discernible evidence of such excesses. This increases the number of known WC9 stars without NIR excesses to seven. Reddenings and distances for all five stars are estimated.  相似文献   

9.
We report observations of the He  i λ 5876 (D3) line in the late A- and early F-type stars in the Pleiades and Alpha Persei star clusters used to determine chromospheric activity levels. This represents the first sample of young stars in this temperature range with chromospheric activity measurements. We find the same average activity level in the young early F stars as in Hyades-age stars and field stars. In addition, the young star sample shows the same large star-to-star variation in activity as seen in the older stars. Thus, as a whole, chromospheric activity in this photospheric temperature range remains the same over nearly a factor of 100 in stellar age (50 Myr to 3 Gyr), in striking contrast to the behaviour of later-type stars. In the five late A stars we find three certain detections of D3 and one likely detection. This includes the bluest star yet observed with a chromospheric D3 line, Pleiades star HII 1362 at ( B − V )0=0.22, making it one of the earliest stars with an observed chromosphere. The late A stars have D3 equivalent widths comparable to the weakest early F stars. However, when comparing D3 measurements in the young late A stars with older late A stars, we find evidence for a slight decrease in activity with age based on the large number of non-detections in the older stars. We find an apparently linear relationship between the activity upper limit and B − V over our entire range of B − V . Extrapolated blueward, this relationship predicts that the chromospheric D3 line would disappear for all stars at B − V ≈0.13.  相似文献   

10.
The radii of several Ap and Am stars have been compared with those of the normal A stars of the Main Sequence. Though the brighter Ap stars have a little larger radii than the Main-Sequence stars, they may not be much different from those of the slightly evolved normal A stars. The Am stars have radii with which they appear to be merging with those of the cooler A stars of the Main Sequence. The Ap stars have radii predominantly in the range of 1.8 to 3.4R , while the Am stars are mainly concentrated between 1.8 and 2.2R .  相似文献   

11.
RR Lyrae stars,a well-known type of pulsating variable stars,have been known about for more than a century.A large amount of photometric data on RR Lyrae stars has been accumulated by space-and ground-based sky surveys,but the spectral data are relatively poor.Fortunately,the LAMOST sky survey project provides an opportunity to view them from the point of view of spectra.We collect the atmospheric parameters of 1685 RR Lyrae stars provided by the LAMOST catalog,and carry out research by using the reliable T_(eff).We find that there is a clear correlation between their Teff and pulsation periods,which is consistent with the pulsation and evolution theories of RR Lyrae stars.In addition,we focus on those RR Lyrae stars with abnormal temperatures.After analyzing the data from several photometric surveys,we find that some of these temperature anomalies are misclassified variable stars(e.g.,eclipsing binaries,pulsating stars on main sequence),and some are RR Lyrae binary candidates.For the latter,the temperatures of potential companions should be lower and their luminosities should not be neglected(e.g.,red giant stars).We obtain that the ratio of temperature anomaly stars to all the sample stars is 4%,which means that the impact on the further analysis(e.g.,kinematics analysis) is low.We also present the catalogs of spectral anomaly RR Lyrae stars.  相似文献   

12.
The Infrared Space Observatory (ISO) Short-Wavelength Spectrometer (SWS) spectra of 10 Be stars are presented. It can be seen that the Be stars show a diversity in their ISO SWS01 spectral classifications by Kraemer et al., from naked stars, stars associated with dust, stars with warm dust shells, stars with cool dust shells to very red sources. In addition, the Brα/HI(14-6) line flux ratio derived for the sample stars is compared with that of P Cyg, and it is found that the line ratio of Be stars which were investigated show not only lower values as suggested by Waters et al., but also larger values. Therefore, the line ratio cannot be used to judge whether a star is a Be star or not.  相似文献   

13.
Be单星和Be/X射线双星作为一类特殊早型天体和特殊的大质量X射线双星 ,在各个波段都有与其它相同光谱型的B型天体显著不同的特征 ,因此长期以来引起中外天文学者的关注。首先在可见光波段发射线的存在 ,就是对仅产生吸收线的经典大气的挑战 ;其次Be星作为一类早型带有包层天体 ,研究Be星包层的性质 ,对研究原恒星包层性质和进一步了解早型星其它光谱型的性质是非常重要的 ;再者可以研究Be星的存在与星际磁场或湍流的星际介质是否有关 ;最后研究Be/X射线双星 ,对双星的演化模型也有很重要的作用。随着天文观测手段的不断完善和理论模型的发展 ,我们对Be星的现象有了更深的了解 ,并且产生了一些模型。研究内容包括Be星包层和星风的性质 ,以及包层形成机制 ,Be/X射线双星物质相互作用等。本文共分五章 ,第一章主要概要介绍Be和Be/X射线双星历史和目前已经取得的成就 ;第二章介绍Be单星多波段观测结果 ;第三章介绍Be/X射线双星的观测结果 ;第四章介绍目前主要的Be单星和Be/X射线双星模型 ;第五章给出Be/X射线双星XPer/ 4U0 352 30的分光观测结果 ,并结合单臂振动盘模型给出定性解释。  相似文献   

14.
In this 11th compilation of BAV results of observations are given from the years 1973 till 1975 for 217 observed minima of 56 eclipsing binaries, 173 maxima of 25 RR Lyrae stars, 624 results of 89 Mira stars, 182 results of 47 RV Tauri stars and irregular variables, 52 results of 27 eruptive variable stars and 12 maxima of four δ Cephei stars.  相似文献   

15.
16.
Recent UV observations of the most massive Galactic globular clusters show a significant population of hot stars below the zero-age HB (“blue hook” stars), which cannot be explained by canonical stellar evolution. Stars which suffer unusually large mass loss on the red giant branch and thus experience the helium-core flash while descending the white dwarf cooling curve could populate this region. They should show higher temperatures than the hottest canonical HB stars and their atmospheres should be helium-rich and probably C/N-rich. We have obtained spectra of blue hook stars in ω Cen and NGC 2808 to test this possibility. Our analysis shows that the blue hook stars in these clusters reach effective temperatures well beyond the hot end of the canonical EHB and have higher helium abundances than canonical EHB stars. These results support the hypothesis that the blue hook stars arise from stars which ignite helium on the white dwarf cooling curve.  相似文献   

17.
Some questions concerning the space distribution of Ap and Am stars have been discussed on the basis of the Abastumani Catalogue containing the data in the two-dimensional MK classification for stars in Kapteyn Areas Nos 2–43. Ap and Am stars do not show the high concentration towards the galactic plane as normal stars of the same spectral interval. Moreover, Ap stars occur at distances up to about 200 pc from the galactic plane, Am stars up to about 400 pc.  相似文献   

18.
We present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B‐type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B (hereafter SPB) stars, along with a small number of normal B‐type stars. A weak mean longitudinal magnetic field of the order of a few hundred Gauss was detected in three β Cephei stars and two stars suspected to be β Cephei stars, in five SPB stars and eight stars suspected to be SPB stars. Additionally, a longitudinal magnetic field at a level larger than 3σ has been diagnosed in two normal B‐type stars, the nitrogen‐rich early B‐type star HD 52089 and in the B5 IV star HD 153716. Roughly one third of β Cephei stars have detected magnetic fields: Out of 13 β Cephei stars studied to date with FORS 1, four stars possess weak magnetic fields, and out of the sample of six suspected β Cephei stars two show a weak magnetic field. The fraction of magnetic SPBs and candidate SPBs is found to be higher: Roughly half of the 34 SPB stars have been found to be magnetic and among the 16 candidate SPBs eight stars possess magnetic fields. In an attempt to understand why only a fraction of pulsating stars exhibit magnetic fields, we studied the position of magnetic and non‐magnetic pulsating stars in the H‐R diagram. We find that their domains in the H‐R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence. It is possible that stronger fields tend to be found in stars with lower pulsating frequencies and smaller pulsating amplitudes. A somewhat similar trend is found if we consider a correlation between the field strength and the v sin i ‐values, i.e. stronger magnetic fields tend to be found in more slowly rotating stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Chemical composition is a good tracer of the hydrodynamical processes that occur in stars as they often lead to mixing and particle transport. By comparing abundances predicted by models and those observed in stars we can infer some constraints on those mixing processes. As pulsations in the stars are often very sensitive to chemical composition, we can use asteroseismology to probe the internal chemical composition of stars where no direct observations are possible. In this paper I focus on main sequence stars Am, λ Bootis, and HgMn stars and discuss what we can learn of mixing processes in these stars from seismology.  相似文献   

20.
We have compiled infrared photometric data from the literature of practically all T Tauri stars found up to date including 444 classical T Tauri stars (CTTSs), 1698 weak-line T Tauri stars (WTTSs) and 1258 not classified T Tauri stars (3400 in total) in addition to 196 post-T Tauri stars (PTTSs). From this data bank we extract the infrared characteristics of the different groups and discuss different origins of the infrared radiation. The observational data are taken from the AKARI, IRAS, WISE and 2MASS missions. We show that in the wavelength range 1–140 μm, all T Tauri stars have infrared excesses. CTTSs have more infrared excess than WTTSs, while PTTSs have little or no infrared excess. We found that in the 1–3 μm wavelength range the infrared emission of T Tauri stars is mainly due to thermal radiation from the photosphere and hot dust grains from circumstellar envelopes. In the 3–140 μm wavelength range the infrared emission of T Tauri stars is mainly due to radiation from dusty/gaseous disks surrounding the stars. In addition, we also make a comparison between T Tauri stars and Herbig AeBe stars (HAeBe). There are some differences between these two kinds of objects in that for HAeBe stars the infrared radiation as a rule originates in dusty/gaseous disks in the 1–3 μm wavelength range, while in the range 3–12 μm it is possibly due to PAH emission for about half of HAeBe stars. In other wavelength ranges both kinds of stars have similar infrared characteristics indicating emission from dusty/gaseous disks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号