首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
南海海底地势复杂,海域内跃层分布有其特殊性,研究声速跃层分布形态对海上军事活动和海洋战场建设有重要影响。利用50 a(1958~2007年)SODA(simple ocean data assimilation)月平均资料,采用垂直梯度法分别求得3种类型声速跃层的特征值。结果表明:冬季,3种类型声速跃层范围全年最小,厚度最薄,强度最弱;夏季,主跃层、双跃层范围全年最大,厚度最厚,深度大都较浅,强度最强。春秋季跃层的示性特征介于冬夏之间,秋季比春季变化明显。  相似文献   

2.
南海中尺度涡的季节和年际变化特征分析   总被引:12,自引:0,他引:12  
以11a(1993—2003年)TOPEX/Poseidon、Jason和ERS1/2高度计的融合资料为基础,统计了南海中尺度涡的时空分布,分析了南海中尺度涡的季节和年际变化,并结合QuikSCAT、ERS1/2风场资料初步探讨了南海中尺度涡形成的可能机制。研究结果表明,南海中尺度涡存在明显的季节和年际变化,而季风强迫是这种变化的主要驱动因素。冬季冷涡(气旋涡)主要分布在吕宋岛西北和越南东南海域,而暖涡(反气旋涡)主要在18°N以北出现。春季暖涡在南海中部开始出现并得到充分发展。夏季暖涡明显多于冷涡,暖涡主要分布在越南东南和吕宋岛西北海域,而冷涡分布于越南以东和南海东北部。秋季冷涡主要分布在越南沿岸,暖涡则分布在南海东北部;11a海面高度异常均方根的时空分布变化也显示了南海中尺度涡存在较强的年际变化。  相似文献   

3.
利用 Sea WiFS卫星遥感叶绿素质量浓度及TRMM微波遥感海表温度产品, 研究了南海海表叶绿素a的季节变化特征及其同海表温度的关系。研究结果表明, 南海叶绿素质量浓度具有很强的季节变化:通常低叶绿素质量浓度(<0.12 mg·m-3)出现在弱风高海表温度(>28°C)的春、夏季节;高叶绿素质量浓度(>0.13 mg·m-3)通常出现在有较强风速和较低海表温度(<27°C)的冬季。线性回归分析显示, 南海叶绿素质量浓度同海表温度呈显著负相关。尽管在南海南部、南海中部、南海西部及吕宋西北部4个代表子区域的显著性有所差异, 但都暗示温度变化所反映的垂向层化调控了营养盐质量浓度和浮游植物量变化。可见, 温度可能是影响海洋上层稳定程度及垂向交换强度的重要指标, 从而可能调控营养盐及浮游植物的变化。  相似文献   

4.
利用 SeaWiFS卫星遥感叶绿素质量浓度及TRMM微波遥感海表温度产品,研究了南海海表叶绿素a的季节变化特征及其同海表温度的关系。研究结果表明,南海叶绿素质量浓度具有很强的季节变化:通常低叶绿素质量浓度(<0.12 mg. m-3)出现在弱风、高海表温度(>28 °C)的春、夏季节;高叶绿素质量浓度(>0.13 mg·m-3)出现在有较强风速和较低海表温度(<27 °C)的冬季。线性回归分析显示,南海叶绿素质量浓度同海表温度呈显著负相关关系。尽管在南海南部、南海中部、南海西部及吕宋西北部4个代表子区域的显著性有所差异,但都暗示温度变化所反映的垂向层化调控了营养盐质量浓度和浮游植物量变化。可见,温度可能是影响海洋上层稳定程度及垂向交换强度的重要指标,从而可能调控营养盐及浮游植物的变化。  相似文献   

5.
南海溶解氧垂直结构的季节变化分析   总被引:2,自引:0,他引:2  
溶解氧在生物活动较小的情况下,与温盐相似,同样具有保守性。本文基于WOD05数据集中实际观测的溶解氧标准层资料,对南海溶解氧的垂直结构及其季节变化进行阐述,指出在浅水陆架区、中央海盆和吕宋岛以东深水区,溶解氧具有不同的垂向分布特点。重点分析了深水区的溶解氧垂向结构,发现其极大值存在季节性变化,量值在冬、春较大,夏、秋较小,出现的深度夏季最深,超过50 m,秋、冬较浅且现象不够明显;极小值基本不存在季节变化,出现的深度约860 m;对比温盐关系曲线,发现溶解氧极大值对应着南海次表层水团上界、衰减缓慢的稳定阶段对应次表层水团高盐核心水层、而极小值则对应中、深层水团的交界。  相似文献   

6.
溶解氧在生物活动较小的情况下,与温盐相似,同样具有保守性.本文基于WOD05数据集中实际观测的溶解氧标准层资料,对南海溶解氧的垂直结构及其季节变化进行阐述,指出在浅水陆架区、中央海瓮和吕宋岛以东深水区,溶解氧具有不同的垂向分布特点.霞点分析了深水区的溶解氧垂向结构,发现其极大值存在季节性变化,量值在冬、春较大,夏、秋较小,出现的深度夏季最深,超过50 m,秋、冬较浅且现象小够明显;极小值基本不存在季节变化,出现的深度约860 m;对比温盐关系曲线,发现溶解氧极大值对应着南海次表层水团上界、衰减缓慢的稳定阶段对应次表层水团高盐核心水层、而极小值则对应中、深层水团的交界.  相似文献   

7.
关于南海暖水季节和年际变化的研究   总被引:1,自引:3,他引:1  
阐述了研究南海暖水的意义 ,综述了关于南海暖水的现状 ,提出了关于南海暖水季节和年际变化方面应该研究的问题  相似文献   

8.
通过一个全球的二维诊断模型,采用Levitus温盐资料和COADS风应力资料,并结合动力计算来研究南海上层环流的季节变化。计算结果与其它模式结果和观测结果非常相似。南海北部(南部)全年存在一气旋式(反气旋式)环流。在冬季气旋式环流几乎占据了整个南海,夏季则以反气旋式环流为主。泰国湾的环流在冬季(夏季)是气旋式的(反气旋的)。南海的西边界流有明显的季节变化,其在冬季从卡里马塔海峡流出南海,夏季部分西边界流从台湾海峡流出南海。越南离岸流在春季就开始出现,其位置比夏季的越南离岸流的位置偏北。  相似文献   

9.
南海暖水的季节变化特征及数值模拟   总被引:14,自引:2,他引:14  
根据Levitus资料,对具有立体结构的南海暖水给出了定义,分析发现:南海暖水的季节变化过程可分为发展、维持、退缩和消失4个阶段;就气候平均而言,南海暖水在季节变化中始终保持西北部浅、东南部深的特点;南海暖水的深度与同期温跃层上界的深度在空间分布特征与季节变化趋势上都基本类似。采用“intermediate”模式模拟了南海暖水的范围和厚度,结果表明发展阶段的南海暖水范围和厚度的增长主要是因为南海地  相似文献   

10.
南海海面高度季节变化的数值模拟   总被引:8,自引:1,他引:8  
比较POM模式模拟与观测(TOPEX/Poseidon高度计资料)的南海海面高度(SSH)的季节变化在空间分布上的一致性和差异.结果表明:本文使用的POM模式能较好地模拟南海SSH的季节变化;冬季与夏季,春季与秋季南海海面异常场形式完全相反,冬季Ekman输运造成在西海岸的堆积要比夏季在东海岸堆积更明显,而吕宋冷涡中心附近和吕宋海峡海面季节变化振幅最大;除春季以外,在南海绝大部分海域,海面高度的季节变化主要受风力的控制,南海海面热量通量对SSH的季节变化贡献约为20%,风应力对SSH的季节变化的贡献约为80%.  相似文献   

11.
南海北部海区上层水体平均声速场的变化   总被引:1,自引:0,他引:1  
对所收集到的南海北部海区的温度、盐度和深度历史资料进行了声速的计算、统计与分析,结果表明该海区上层水体的平均声速场有较明显的年际变化:表层声速的平面分布显示出沿岸水与外海水强弱交替变化的特征,声速等值线的走向几乎与岸线平行,等声速线的值自近岸向外海增加,大陆架外缘海区声速的水平梯度较大;下层声速的分布以环流和水体共同作用的形式出现,50m层声速平面分布的趋势除冬季与表层稍为相似外,其余季节与表层有明显的差别,春、夏季节50m层声速自西向东增加,而秋季与其表层分布相反,自近岸向外海减小;声速的垂直分布受海水升温与降温的影响显著,春、夏季表层海水升温,海表声速最大,声速自海表随深度的增加而减小;秋、冬季表层附近水层降温,声速稍偏低,普遍出现正梯度现象,最大声速移至表层以下的水层,这个深度随季节的改变而改变,随海区的不同而不同.该海区的平均声速有年波动现象,表层波幅最大,随深度的增加波幅变小,至100m水层其波动的位相几乎与表层相反.  相似文献   

12.
A three-dimensional numerical model is used to simulate sea level and velocity variations in the South China Sea for 1992–1995. The model is driven by daily wind and daily sea surface temperature fields derived from the NCEP/NCAR 40-year reanalysis project. The four-year model outputs are analyzed using time-domain Empirical Orthogonal Functions (EOF). Spatial and temporal variations of the first two modes from the simulation compare favorably with those derived from satellite altimetry. Mode 1, which is associated with a southern gyre, shows symmetric seasonal reversal. Mode 2, which contributes to a northern gyre, is responsible for the asymmetric seasonal and interannual variations. In winter, the southern and northern cyclonic gyres combine into a strong basin-wide cyclonic gyre. In summer, a cyclonic northern gyre and an anticyclonic southern gyre form a dipole with a jet leaving the coast of Vietnam. Interannual variations are particularly noticeable during El Niño. The winter gyre is generally weakened and confined to the southern basin, and the summer dipole structure does not form. Vertical motions weaken accordingly with the basin-wide circulation. Variations of the wind stress curl in the first two EOF modes coincide with those of the model-derived sea level and horizontal velocities. The mode 1 wind stress curl, significant in the southern basin, coincides with the reversal of the southern gyre. The mode 2 curl, large in the central basin, is responsible for the asymmetry in the winter and summer gyres. Lack of the mode 2 contribution during El Niño events weakens the circulation. The agreement indicates that changes in the wind stress curl contribute to the seasonal and interannual variations in the South China Sea.  相似文献   

13.
南海北部温跃层逐月变化特征分析   总被引:2,自引:0,他引:2  
本文利用Levitus逐月再分析海温资料,通过对南海北部沿几个主要经、纬线剖面的温跃层特征逐月变化进行分析,研究了南海北部海域温跃层的逐月变化特征,并简要分析了其原因.结果发现,该海域跃层深度逐月变化显著,但厚度和强度变化不大;跃层深度、厚度和强度的变化不同步.另外,与外海相比,近岸跃层期短,且跃层较浅、较薄、较强,但...  相似文献   

14.
南海混合层深度的季节和年际变化特征   总被引:1,自引:0,他引:1  
利用1871-2008年SODA资料和月平均的Levitus资料计算了南海混合层深度(MLD)的季节及年际变化特征.资料分析表明:季风通过流场调整对南海MLD的时空分布特征有显著的影响.南海MLD的距平变化总体上呈上升趋势,南海南部MLD的距平变化趋势和北部的有显著差异,特别在1955年后北部整体呈下降趋势而南部呈上升趋势,二者的显著周期北部为2-3年,南部与整个区域平均的基本相似有2-6年的显著周期.SOI指数对滞后的南海各个区域有较好的相关性.EOF分析表明第一模态整体呈单极型最大变率分布在南海南部,由南往北逐渐减小显著周期2-3年变化为主;第二模态呈偶极子型,显著周期以2-5年变化为主.回归分析表明南海南部深水区域呈现增深的趋势,而吕宋海峡至南海北部陆架区呈变浅趋势,滑动t检验表明南海MLD有6个显著的突变年份.  相似文献   

15.
The nature and characteristics of the mixed layer depth (MLD) remain uncertain in the northern South China Sea. Using in situ data, we examined the quality of different MLD definitions, investigated the spatial and diurnal variation in the MLD, and examined the mechanisms of mixed layer development during March 23–31, 2014. We made distinct calculations of the MLD; of which two are (a) the depths between two different temperatures (0.2, 0.6 °C) and (b) the depths between two density differences (0.125, 0.25 kg/m3); and the fifth calculation is a depth derived from the optimal linear fitness method. We found that the optimal linear fitness MLD was the best definition for our study region ,and that it deepened from the shelf to the slope. Twenty-four-hour diurnal variation in the MLDs and mixing layers was observed when the ship was moored. Mixing layers were characterized by turbulent dissipation rates. We found that the mixed layer underwent a ‘stable-decaying–developing’ process. During the stable period, the MLD was close to that of the mixing layer, but during the decay/development periods, the MLDs were larger/smaller than those of the mixing layers. We suggest that both velocity shear and buoyancy flux were important in mixed layer development. We quantitatively examined the mechanisms of mixing in the shelf region, with air–sea net heat flux determined to be the major factor, rather than wind speed or current velocity.  相似文献   

16.
在南海北部,与中尺度涡相关的季节内变异特征十分显著,通过比较不同时期流场的季节内变异特征,有助于揭示不同动力不稳定中尺度涡对季节内活动的影响。本文以南海北部2009年春季和2020年春季为例,分析了两个时期中尺度涡的动力不稳定性,从而探究季节内变异特征。基于潜标实测流速数据,本文进行了动能谱分析,结果显示这两个时期的流场季节内变异具有相似特征,显著周期分别为10~60 d和30~90 d。季节内信号主要出现在200 m以上的上表层水域,其中30~90 d的季节内流是对应观测期间的主要季节内成分。滞后回归分析和动力不稳定性的计算表明,2009年春季的季节内变异受移动快但强度弱的表层中尺度涡影响,动力不稳定性由斜压不稳定和正压不稳定共同调制;而2020年春季的季节内变异是受强斜压性的中尺度涡影响,通过流速垂向切变增强,从而较快地触发流场季节内变异的发生。本文研究结果有助于深入了解中尺度涡对南海北部季节内活动的影响机制,为海洋动力学和气候研究提供了重要的参考和理论基础。  相似文献   

17.
Deep water in the South China Sea is renewed by the cold and dense Luzon Strait overflow. However, from where and how the deep water upwells is poorly understood yet. Based on the Hybrid Coordinate Ocean Model reanalysis data, vertical velocity is derived to answer these questions. Domain-integrated vertical velocity is of two maxima, one in the shallow water and the other at depth, and separated by a layer of minimum at the bottom of the thermocline. Further analysis shows that this two-segmented vertical transport is attributed to the vertical compensation of subsurface water to the excessive outflow of shallow water and upward push of the dense Luzon Strait overflow, respectively. In the abyssal basin, the vertical transport increases upward from zero at the depth of 3 500–4 000 m and reaches a maximum of 1.5×106 m3/s at about 1 500 m. Deep water upwells mainly from the northeastern and southwestern ends of the abyssal basin and off the continental slopes. To explain the upward velocity arising from slope breaks, a possible mechanism is proposed that an onshore velocity component can be derived from the deep western boundary current above steep slopes under bottom friction.  相似文献   

18.
高爽  杨光兵  熊学军 《海岸工程》2022,41(2):144-152
声散射是重要的声学现象,海洋水体产生的高频声散射信号既可用于开展多种目的的声学海洋学研究,也可能对水下声学设备产生干扰,而海洋水体背景声散射具有显著的时空变异特征,因此针对特定海区开展声散射时变观测具有重要意义。本文利用在南海北部布放的锚系系统所搭载的声学多普勒流速剖面仪,获取了覆盖4个季节的累计约80 d的声散射数据,数据包括75 kHz和300 kHz两个频段,观测水深几乎覆盖了从海面到约600 m水深的整个水体。结果表明,水体在垂向上分布着上散射层和深散射层2个主要散射层。上散射层分布深度在冬夏较浅,位于约100 m以浅,在春秋较深,位于约200 m以浅;深散射层分布深度同样为冬季最浅,位于约300 m以深,但夏季则最深,位于约400 m以深。因此,两散射层的距离在夏季最远,在春秋最近。2个散射层的声散射强度(Sv)同样具有明显的季节变化,上散射层散射强度夏秋较强而春冬较弱,深散射层则正好相反。  相似文献   

19.
Seasonal Variability of Thermohaline Front in the Central South China Sea   总被引:5,自引:0,他引:5  
An upper layer thermohaline front across the South China Sea (SCS) basin from the South Vietnamese coast (around 15°N) to Luzon Island (around 19°N) has been identified using the Navy's open domain Generalized Digital Environmental Model (GDEM) monthly mean temperature and salinity data on a 0.5° × 0.5° grid. This front does not occur at the surface in summer. The strength of this front is around 1°C/100 km at the surface and 1.4°C/100 km at the subsurface (50 m deep). A cross-basin current, inverted using the P-vector method, is associating with the front. Meandering and eddies have been identified along this current. Seasonal and vertical variabilities of the thermohaline structure across this front are reported in this paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号