首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张畅  陈新军 《海洋学报》2019,41(2):99-106
澳洲鲐(Scomber australasicus)是西北太平洋重要的中上层经济鱼类,生命周期相对较短,资源量受补充量影响明显,了解澳洲鲐太平洋群系补充量状况对掌握其资源量及确保其可持续利用具有重要的意义。本文利用产卵场1(30°~32°N,130°~132°E)海表面温度(sea surface temperature,SST1)、产卵场2(34°~35°N,138°~141°E)海表面温度(SST2)、索饵场(35°~45°N,140°~160°E)海表面温度(SST3)、潮位差(tidal range,TR)、太平洋年代际涛动(Pacific decadal oscillation,PDO)和亲体量(spawning stock biomass,SSB)6个影响因子任意组合与补充量构建多个模型,运用贝叶斯模型平均法(Bayesian model averaging,BMA)分析各个环境因子对资源补充量的解释能力,并预测其补充量的变化。结果表明,SSB对补充量具有最长期且稳定的解释能力,其次是SST3,PDO、TR、SST2、SST1也对补充量模型具有一定的解释能力。SST3是环境因子中影响最大的因子,可能是由于补充群体在索饵场内生活时间较长,索饵场温度对仔鱼或鱼卵的生长存活有较大的影响。研究认为,基于BMA的组合预报综合考虑了各个模型的优势,优于单一模型,可用于澳洲鲐资源补充量的预测。  相似文献   

2.
The factors modulating recruitment success of Cape hake Merluccius capensis in Namibian waters are still unresolved. In this study, we used generalised additive models, regression tree analysis and the conventional Ricker model to examine the effect of environmental indices and spawning stock biomass (SSB) on hake recruitment success for the period 1984–2012. Results indicated that upwelling strength explained 51% of the recruitment variability, whereas SSB had no significant influence. The effect of SSB on recruitment only became significant when combined with upwelling strength, explaining 89% of the recruitment variability. SSB influenced recruitment during periods of strong upwelling. Optimal conditions for hake recruitment were associated with moderate upwelling strength. Low and high upwelling intensities reduced recruitment success. Our results are consistent with those of other studies suggesting a significant influence of environmental conditions on recruitment at a low spawning stock level. Our study highlights the importance of assessing the combined non-linear effects of both biotic and abiotic factors on hake recruitment.  相似文献   

3.
《Journal of Sea Research》2003,49(3):187-201
Retention or dispersion of larvae from the spawning ground has been identified as one of the key processes influencing recruitment success in fish stocks. An exercise combining 3-D hydrodynamic model simulations and field data on spatial distributions of juvenile Baltic cod was utilised to investigate the potential drift of larvae from the centre of main spawning effort in the Bornholm Basin, Baltic Sea. In the simulations cod larvae were represented as Lagrangian drifters. Habitats in which larvae and juvenile cod potentially dwell and where juveniles settle were identified to ascertain the importance of predicting transport. The transport of Baltic cod larvae was investigated by detailed drift model simulations for the years 1986 to 1999. The results yielded a clear dependency on wind-induced drift of larval cod, which is mainly controlled by the local atmospheric conditions over the Baltic Sea. Seasonally averaged distributions of drifters were compared with actual distributions of 0-group cod, as determined from bottom and pelagic trawl surveys conducted in autumn of the years 1993 to 2000 in and around the Bornholm Basin. The results suggest that juveniles caught in different areas can be assigned to different times of the spawning season. Because of seasonal differences in the circulation patterns, the southern coastal environment is on average most important for early and late spawners, whereas larvae hatching in mid-summer were on average transported towards the north or to a higher degree remained in the spawning ground.  相似文献   

4.
《Journal of Sea Research》2007,57(2-3):104-113
Successful stock enhancement or restocking requires a thorough understanding of the ecological processes that provide a potential for stocking within different ecosystems, i.e. determine which factors define the potential for stocking, such as population dynamics, economic cost-benefits, fisheries management and socio-economic impacts. Stocking is not simply a question of aquaculture logistics (i.e. the ability to produce a sufficient number of fry relative to the magnitude of the natural recruitment within the system), nor should it be a new outlet for aquaculture production. Quantitative targets should be set and the expected performance of the stocking tested. Potential loopholes, such as post-release mortality and habitat requirements related to the release, should be examined and resolved. If properly managed, stocking may lead to an increase in population, contribute to the local fishery and/or lead to an increase in the spawning stock biomass. The criteria for stocking are discussed in this paper using examples from flatfish and cod stocking programmes within specific ecosystems.  相似文献   

5.
Concern about future anthropogenic warming has lead to demands for information on what might happen to fish and fisheries under various climate-change scenarios. One suggestion has been to use past events as a proxy for what will happen in the future. In this paper a comparison between the responses of Atlantic cod (Gadus morhua) to two major warm periods in the North Atlantic during the 20th century is carried out to determine how reliable the past might be as a predictor of the future. The first warm period began during the 1920s, remained relatively warm through the 1960s, and was limited primarily to the northern regions (>60°N). The second warm period, which again covered the northern regions but also extended farther south (30°N), began in the 1990s and has continued into the present century. During the earlier warm period, the most northern of the cod stocks (West Greenland, Icelandic, and Northeast Arctic cod in the Barents Sea) increased in abundance, individual growth was high, recruitment was strong, and their distribution spread northward. Available plankton data suggest that these cod responses were driven by bottom-up processes. Fishing pressure increased during this period of high cod abundance and the northern cod stocks began to decline, as early as the 1950s in the Barents Sea but during the 1960s elsewhere. Individual growth declined as temperatures cooled and the cod distributions retracted southward. During the warming in the 1990s, the spawning stock biomass of cod in the Barents Sea again increased, recruitment rose, and the stock spread northward, but the individual growth did not improve significantly. Cod off West Greenland also have shown signs of improving recruitment and increasing biomass, albeit they are still very low in comparison to the earlier warming period. The abundance of Icelandic cod, on the other hand, has remained low through the recent warm period and spawning stock biomass and total biomass are at levels near the lowest on record. The different responses of cod to the two warm events, in particular the reduced cod production during the recent warm period, are attributed to the effects of intense fishing pressure and possibly related ecosystem changes. The implications of the results of the comparisons on the development of cod scenarios under future climate change are addressed.  相似文献   

6.
《Journal of Sea Research》2007,57(2-3):91-103
Factors contributing to population growth through strong year-class formation have driven a century of directed research in fisheries science. A central discovery of Hjort's paradigm was that multiple generations overlap and longevity is matched with frequency of strong recruitments. Here, I elaborate on this tenet by examining how intra-population modalities in spawning and early habitat use favour population resiliency. A modern theory that has application is the storage effect [Warner, R.R., Chesson, P.L., 1985. Coexistence mediated by recruitment fluctuations – a field guide to the storage effect. Am. Nat. 125, 769–787], whereby spawning stock biomass accumulates each year so that when early survival conditions are favourable, stored egg production can result in explosive population growth. I review two early life history behaviours that contribute to the storage effect: split cohorts (i.e., seasonal pulses of eggs and larvae) and contingent behaviour (i.e., dispersive and retentive patterns in early dispersal). Episodic and pulsed production of larvae is a common feature for marine fishes, well documented through otolith microstructure and hatch-date analyses. In temperate and boreal fishes, early and late spawned cohorts of larvae and juveniles may have differing fates dependent upon seasonal and inter-annual fluctuations in weather and climate. Often, a coastal fish may spawn for a protracted period, yet only a few days' egg production will result in successful recruitment. In these and other instances, it is clear that diversity in spawning behaviour can confer resilience against temporal variations in early survival conditions. Although many factors contribute to intra-population spawning modalities, size and age structure of adults play an important role. Contingent structure, an idea dating to Hjort (herring contingents) and Gilbert (salmon contingents), has been resurrected to describe the diversity of intra-population modalities observed through otolith microchemical and electronic tagging approaches. Retentive and dispersive behaviours confer resiliency against early survival conditions that vary spatially. Examples of contingent structure are increasingly numerous for diadromous fishes. Here, a nursery habitat associated with a contingent behaviour may make a small contribution in a given year, but over a decade contribute significantly to spawning stock biomass. For flatfish and other marine fishes, contingent structure is probable but not well documented. Proximate factors leading to contingent structure are poorly known, but for diadromous fishes, time of spawning and early life history energetic thresholds is hypothesized to lead to alternative life cycles. Here again time of spawning may lead to the storage effect by hedging against spatial variance in early vital rates. Managing for the storage effect will be promoted by conservation of adult age structure and early habitats upon which both strong and weak year-classes rely.  相似文献   

7.
Abstract. The prawn Penaeus kerathurus completes its life cycle in Amvrakikos Gulf. The reasons for not entering the open sea depend on the status of biotic and abiotic factors of the gulf. The migratory movements of the species in the gulf are described by a simple square model, in each corner of which, the wintering, spawning, nursery, and recruitment area exist. The wintering area is located below the 25m isobath and wintering period lasts from late December to late March. Spermatophores on females are observed throughout the year but the highest percentages between April and August. The spawning season begins late in spring and continues through the summer. The spawning area is located below the 10m isobath, mainly around 25m. The nursery area of Penaeus kerathurus is in shallow waters near river estuaries, and the temporal limits were determined to be between mid-summer and mid-autumn. Finally, the recruitment area is located near the nursery area, with recruitment taking place in autumn, while the major stock renewal is restricted to winter.  相似文献   

8.
Cheating about the cod   总被引:1,自引:0,他引:1  
The Northeast Arctic cod is managed by a total quota shared evenly between Norway and Russia. It appears that Russia has been overfishing its quota by substantial amounts for a number of years, due to insufficient monitoring of fishing vessels. This paper considers what would be the best reply by Norway to given levels of Russian overfishing. It is found that in most cases the best Norwegian reply would be also to overfish its quota. An aggregate biomass model with stochastic growth and recruitment is used to analyze this question, with parameters estimated from 1946 to 2005 data. Recruitment is serially correlated but apparently independent of the spawning stock. A model using the estimated serial correlation in recruitment and a random disturbance is capable of reproducing recruitment patterns similar to the irregular pattern observed since 1946.  相似文献   

9.
Birthdate distributions of anchovy recruits caught during research surveys in June 1985 and June 1989 were compiled from weighted length frequency distributions, aged samples and length frequencies from commercial catches. Birthdates ranged from July to March with a peak in October for both year-classes. However, birthdate distribution for the 1989 year-class showed comparatively few fish spawning after October 1988. Also, the growth rate of recruits was slower in 1989 than in 1985. It is proposed that the very weak 1989 year-class of anchovy and the low spawning biomass subsequently observed were a result of poorer-than-average egg production and survival of prerecruits spawned after October 1988, and the slow rate of growth of juvenile anchovy recruited till June 1989.  相似文献   

10.
The Jan Mayen area has an extreme environment with low temperatures and infrequent, but abrupt temperature changes. The shrimp population here is considered to be on its edge of distribution. The life-history parameters are in the same range as in other high-latitude shrimp populations and are characterized by slow growth, large size at maturation and extended longevity. Irregular and sporadic commercial exploitation limit fishing mortality and give the population life-history parameters not previously seen in other areas. The Jan Mayen shrimp are large compared to, e.g., the Barents Sea shrimp and can reach a maximum carapace length (Lmax) of 37 mm and an age of 10–11 years. The large size at sex transformation (L50, >24 mm) and analyses of length–frequency distributions indicate that the shrimp may be 6–7 years of age before changing sex. The change in Lmax and L50 observed during the study period is probably caused by increased natural mortality due to sudden temperature changes or due to increased predation, rather than increased growth rates. The life-history strategy of shrimp in the Jan Mayen area can be explained by factors such as depth, temperature and population density variations caused by fluctuation in recruitment and mortality.The shrimp fisheries in the Jan Mayen area began in the late 1970s and reached an annual landing of 2000 tonnes in 1985, and since then landings have oscillated around 500 tonnes depending on a combination of factors. The survey indices of stock biomass varied between 3000 and 6600 tonnes. For most years, the highest shrimp densities are at a depth of 200–299 m, while large shrimp (and therefore also female shrimp) are dominant at depths greater than 300 m.Fish community data were studied as the composition of the demersal fish community is an integrated response to environmental conditions and as predation affects the shrimp stock. Polar cod and capelin are the most abundant fish species in the study area. A high number of blue whiting was registered in 1979, but the number declined in 1980 and 1981 as temperature decreased. During the surveys in 1994 and 1995, no blue whiting was registered. A few individuals were found again in the 1999 samples. The number of Greenland halibut has declined from the beginning of the 1980s to the 1990s.  相似文献   

11.
In the North Atlantic the Icelandic, the North Sea, and the Newfoundland cod stocks are currently overexploited. Overexploitation also characterised the Northeast Arctic cod stock, but effective management measures introduced in 1990 and the years thereafter have brought this stock within safe biological limits. The Northeast Arctic cod stock is transboundary and shared between Norway and Russia. As guidelines for a sound management strategy of this cod stock in the future, reference points for management are discussed. As a point of departure, a management strategy which fulfils the objectives for fishery policy stated by Norway is analysed. These objectives, focusing on sustainable harvesting, increased profitability and the role of the fishery as employer of labour in rural districts are fundamental in most of the world's fishery nations.The “optimal” strategy is defined as the one which fulfils these in the best way possible. The natural variations are discussed and the biological and economic yield's dependence upon the rate of exploitation are analysed. The analysis shows that the size of the spawning stock should be no less than 500 000 tonnes and that highest yield is obtained through a rate of exploitation of around 17–30% (equivalent to a fishing mortality of about 0.20–0.40). A spawning stock size of 500 000 tonnes should therefore serve as a “limit reference point” and a fishing mortality of about 0.20–0.40 should serve as a “target reference point” in the management of Northeast Arctic cod.The method described may be applied to other demersal stocks to help establish target and limit reference points in order to conduct a sound management.  相似文献   

12.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

13.
西南大西洋阿根廷滑柔鱼,Illex argentinus,巴塔哥尼亚南部群体是重要的经济种类。海洋环境因子在柔鱼资源分布中起着重要的作用。本研究利用基于环境因子的动态产量模型评估2000-2010年的滑柔鱼的资源量。假设海洋环境因子(滑柔鱼产卵场最适宜海表温度占比)影响动态产量模型的参数K,DIC值表明在正态分布和均匀分布下均是基于环境因子的评估模型优于基本的动态产量模型。阿根廷滑柔鱼的最大可持续产量(MSY)在351600吨到685 100吨之间,资源生物量在1322400吨到1 803 000吨之间,其捕捞死亡系数均小于F0.1FMSY,资源处在良好状态,没有遭受过度捕捞。本研究为应用环境因子在柔鱼类的资源评估与管理提中供了科学的参考方法。  相似文献   

14.
The Eastern Baltic cod stock was until recently below safe biological limits and suffered from high fishing pressure. In most recent years, fishing mortality substantially declined and spawner biomass more than tripled. Similar developments have not been observed for any other depleted cod stock in the North Atlantic during the last few decades. This paper investigates relative impacts of changes in different ecological and management-related drivers, which could have contributed to the rapid recovery of the Eastern Baltic cod. The results show that the success to reduce fishing mortality below management target in 2008 was due to a combination of increased recruitment and improved compliance with TAC. The reversal of the negative trend in biomass and rebuilding of the stock to the present level were largely driven by increased recruitment. Harvest control rules of the multi-annual management plan for setting TACs currently maintain the fishing mortality at a low level, which allows the stock to accumulate biomass and further accelerate its recovery. Relatively strong incoming year-classes and recently better control over removals distinguish the Eastern Baltic cod from other depleted European cod stocks, which have not shown similar positive trends in recent years. Sound management measures and compliance to those as well as favourable biological conditions are required for a successful stock recovery.  相似文献   

15.
采用物理环境因子,确定鲐鱼仔幼鱼运动和物理环境之间的响应关系,建立起了基于个体具有游泳行为的鲐鱼早期生长史模型。结果表明,具有游泳行为仔幼鱼前期对输运分布的影响不大,后期随着游泳能力的增强,逐渐在温盐梯度较大锋面,靠近暖水的一侧进行集群和滞留,并使向东北输运速度降低,输运到太平洋和日本海的幼鱼数量下降,所处水深降低,适应生长发育,死亡率降低。产卵场位置的变动使偏西产卵的集群受台湾暖流影响较大,导致集群偏西,主要聚集在偏北的台湾暖流水和长江冲淡水交汇区高温、高盐一侧。偏东产卵受黑潮影响较大,集群偏东,不形成大量聚集和滞留;在生存率方面正常产卵位置是最佳产卵位置。研究认为,物理环境和生物因素同样会对具有游泳行为仔幼鱼的输运和补充产生影响。  相似文献   

16.
Changes in biotic and abiotic processes following mangrove clearing   总被引:1,自引:0,他引:1  
Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves (Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an important aspect of managing tropical coastal systems.  相似文献   

17.
Besides variable egg survival, previous studies suggested that the larval stage may be the most critical phase in determining Baltic cod recruitment variability, and that larvae need to conduct an ontogenetic vertical migration from hatching depths (>50 m) to upper layers with increased food availability in order to initiate first feeding, improve their nutritional condition and growth, and avoid starvation. Recently, detailed information on the stage-resolved vertical distribution of main Baltic copepod species, including the preferred larval Baltic cod prey species Pseudocalanus acuspes, has become available. Therefore, the vertical distribution of Baltic cod larvae in August 2007 and their depth-dependent nutritional condition and growth were investigated. RNA–DNA based methods were used to estimate growth, including a novel approach to estimate growth performance by relating observed specific growth rates (SGR) of field caught larvae to temperature-dependent reference growth rates (Gref) for fast-growing laboratory reared fish from the literature. This standardization to Gref was found to have a great potential to improve investigations on the growth and ecology of larval fish. The need for early larvae to migrate to shallower layers was corroborated, while larger size classes were found at increasingly greater depths. This may reflect a continuation of the ontogenetic vertical migration in order to follow increasingly larger prey items at greater depths and to save energy in cooler waters below the thermocline. Larval growth generally declined with increasing depth, but the decline in growth became less pronounced in larger size classes. This indicates that larger larvae were better in coping with the ambient environment and the available prey field at greater depths. Generally, Baltic cod larvae grew poorly compared to larvae from other studies, which is discussed in relation to differences in predation and a possible food–temperature trade-off for larvae in the highly stratified Baltic Sea. Comparison with earlier results showed a higher frequency of starving larvae and lower frequencies of larger larvae after the first-feeding stage in 1994 and 1995. As this was a period of low Baltic cod recruitment despite favourable conditions for egg survival, it is concluded that larval starvation mortality has a high potential to contribute to recruitment variability in Baltic cod.  相似文献   

18.
Short-lived species are extremely dependent on the seasonal and interannual variability of environmental conditions, and determining their stock status is often difficult. This study investigates the effects of environmental variability and fishing pressure on the stock of octopus Octopus vulgaris in Senegalese waters over a 10-year period from 1996 to 2005. Monthly catches-at-age were estimated based on catch-at-weight data and a polymodal decomposition constrained by a given growth curve. Octopus recruitments and fishing mortalities were then estimated using a catch-at-age analysis performed on a monthly basis. Yield and biomass per recruit were simulated using a Thompson and Bell model and used to generate a diagnostic of the fishery's impacts. Results indicate that the high interannual and seasonal variability of the octopus stock biomass is linked to the spring recruitment event, the annual intensity of which was significantly correlated with the coastal upwelling index and sea surface temperature. Yield per recruit varied seasonally but remained almost unchanged from one year to the next. Even when catches vary strongly according to recruitment, the octopus stock appears to be consistently fully exploited, or slightly overexploited in some years. In this context of environmental variability, usual indicators such as the maximum yield per recruit, and the related fishing mortality and spawning potential ratio, remain useful for fisheries management purposes.  相似文献   

19.
Jean-Noël Druon   《Marine Policy》2010,34(2):293-297
The feeding and spawning habitats of the overfished Atlantic bluefin tuna (BFT) are mapped in the Mediterranean Sea and used in the present proposal for selecting restricted fishing grounds. The feeding habitat is mainly traced by oceanic fronts of satellite-derived temperature and chlorophyll while the spawning habitat is mostly characterized by an important heating of surface waters. The proposal recommends opening the fishery in feeding areas in case the BFT stock is low (current situation). Only spawning areas at its latest stage could be opened once the stock has recovered to its optimum yield. Due to the possible concentration of fishing vessels if fishing areas are restricted (e.g. four-fold increase with a 1/16th restriction of the Mediterranean Sea) the inspection activities could be better targeted. Identified spawning grounds, opened or closed to fishing, could also be particularly monitored by control operations. Within the authorized areas, the habitat maps would guide fishermen to the favourable habitat reducing their costs. The habitat guided management could be able to adapt the spatial and temporal distribution of the effort to the requirements of both the fisheries’ control and the resource. Its implementation is likely to protect the stock (a) by apparently decreasing illegal fishing which accounts in the recent years for more than 1/3rd of total catches, (b) by protecting the spawners to ensure a suitable recruitment and (c) by distributing the effort to respect the population structure. The first species studied is the emblematic bluefin tuna which is at high risk of collapse due to overfishing. The approach is a priori transposable to other epipelagic species of commercial importance.  相似文献   

20.
In this paper Cohort Analysis (VPA) with the data on catch in number by age and year is used to estimate independently fishing mortality, abundance and actual number of spawning stock of the Pacific herring in the Huanghai Sea. The results show that catch rate of the fishery is very high, and that the fishing mortality of the dominant age group aged 2-4 was 0.87-2.97 during the years 1971-1984. The size of year class has been decreased since 1982 although the variability for this species in the Huanghai Sea is frequent. This results in reducing the recruitment of the fishery, the abundance and the actual number of spawning stock. Therefore, an urgent management measure should be considered.The magnitude of several sources of errors in Cohort Analysis (VPA) are examined, and the precision of the estimates is mainly dependent on an accurate natural mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号