首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk meteorite samples of various chemical classes and petrologic types (mainly carbonaceous chondrites) were systematically investigated by the stepped combustion method with the simultaneous isotopic analysis of carbon, nitrogen, and noble gases. A correlation was revealed between planetary noble gases associating with the Q phase and isotopically light nitrogen (δ15N up to –150‰). The analysis of this correlation showed that the isotopically light nitrogen (ILN) is carried by Q. In most meteorites, isotopically heavy nitrogen (IHN) of organic compounds (macromolecular material) is dominant. The ILN of presolar grains (diamond and SiC) and Q can be detected after separation from dominant IHN. Such a separation of nitrogen from Q and macromolecular material occurs under natural conditions and during laboratory stepped combustion owing to Q shielding from direct contact with oxygen, which results in Q oxidation at temperatures higher than the temperatures of the release of most IHN. There are arguments that ILN released at high temperature cannot be related to nanodiamond and SiC. The separation effect allowed us to constrain the contents of noble gases in Q, assuming that this phase is carbon-dominated. The directly measured 36Ar/C and 132Xe/C ratios in ILN-rich temperature fractions are up to 0.1 and 1 × 10–4 cm3/g, respectively. These are only lower constraints on the contents. The analysis of the obtained data on the three-isotope diagram δ15N–36Ar/14N showed that Q noble gases were lost to a large extent from most meteorites during the metamorphism of their parent bodies. Hence, the initial contents of noble gases in Q could be more than an order of magnitude higher than those directly measured. Compared with other carbon phases, Q was predominantly transformed to diamond in ureilites affected by shock metamorphism. The analysis of their Ar–N systematics showed that, similar to carbonaceous chondrites, noble gases were lost from Q probably before its transformation to diamond.  相似文献   

2.
A non-colloidal fraction separated by physical means from an HFHCl-resistant residue of the Allende carbonaceous meteorite exhibits a ratio of isotopically “normal” (Q-type) xenon to “anomalous” xenon (X-type) that is ~4 times larger than usually observed. Coincidentally this fraction contains carbon that is isotopically heavier by ~10%. than bulk Allende residue samples. ESCA analyses of companion colloidal separates show that the major portion of the S contained in our HFHCl-residues is elemental rather than a sulfide. They also confirm earlier observations that no elementally distinct surface coating is present, in accord with the absence of a surface-sited sulfur-bearing gas carrier, and that the oxygen content is increased after etching with nitric acid. For these separates noble gas data coupled with the ESCA data for nitrogen and the isotopic data for carbon point to the existence of heterogeneities among the noble gas-, carbon- and nitrogen-bearing phases and, thus, preservation of discrete components from the variety of source regions (or production mechanisms, or both) sampled by the Allende parent body. In sharp contrast to the success of physical and chemical methods in yielding samples in which one of the major noble gas components predominates to an extraordinary degree over the other, carbon isotopic compositions that have been inferred for the respective carrier phases in these same samples are strongly contradictory. Mass and isotope balance considerations lead us to conclude that a major fraction of the carbonaceous matter in Allende is noble-gas-poor, a result that could be confirmed by direct isolation of a sample, the carbon in which is dominated by this variety; and for that reason no simple relationship is discernable yet between observed isotopic compositions and either major noble gas component. Similar ambiguities may exist for nitrogen. The possible relationship between carbon-rich phases in ureilites and carbonaceous chondrites is considered.  相似文献   

3.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   

4.
Based on the analysis of data in [1, 2] on the concentrations of noble gases and the cosmic ray exposure age (CREA) of chromite grains in fossil meteorites, it was demonstrated in [3] that the distributions of gas concentrations and cosmic ray exposure ages can be explained under the assumption of the fall of a single meteorite in the form of a meteorite shower in southern Sweden less than 0.2 Ma after the catastrophic destruction of the parental body (asteroid) of L chondrites in space at approximately 470 Ma. This assumption differs from the conclusion in [1, 2, 4] about the long-lasting (for 1–2 Ma) delivery of L chondrites to the Earth, with the intensity of the flux of this material one to two orders of magnitude greater than now. The analysis of newly obtained data on samples from the Brunflo fossil meteorite [5] corroborates the hypothesis of a meteorite shower produced by the fall of a single meteorite. The possible reason for the detected correlations between the cosmic ray exposure ages of meteorites and the masses of the samples with the 20Ne concentrations can be the occurrence of Ne of anomalous isotopic composition in the meteorites.  相似文献   

5.
Two examined fragments of the Kaidun meteorite principally differ in the concentrations of isotopes of noble gases and are very heterogeneous in terms of the isotopic composition of the gases. Because these fragments belong to two basically different types of meteoritic material (EL and CR chondrites), these characteristics of noble gases could be caused by differences in the cosmochemical histories of the fragments before their incorporation into the parent asteroid. As follows from the escape kinetics of all gases, atoms of trapped and cosmogenic noble gases are contained mostly in the structures of two carrier minerals in the samples. The concentrations and proportions of the concentrations of various primary noble gases in the examined fragments of Kaidun are obviously unusual compared to data on most currently known EL and CR meteorites. In contrast to EL and CR meteorites, which contain the primary component of mostly solar provenance, the elemental ratios and isotopic composition of Ne and He in the fragments of Kaidun correspond to those typical of the primary components of A and Q planetary gases. This testifies to the unique conditions under which the bulk of the noble gases were trapped from the early protoplanetary nebula. The apparent cosmic-ray age of both of the Kaidun fragments calculated based on cosmogenic isotopes from 3He to 126Xe varies from 0.027 to 246 Ma as a result of the escape of much cosmogenic isotopes at relatively low temperatures. The extrapolated cosmic-ray age of the Kaidun meteorite, calculated from the concentrations of cosmogenic isotopes of noble gases, is as old as a few billion years, which suggests that the material of the Kaidun meteorite could be irradiated for billions of years when residing in an unusual parent body.  相似文献   

6.
富勒烯(Fullerene)为除金刚石和石墨外碳元素的第三种同素异形体,自Kroto等1985年发现以来,对富勒烯的研究一直是世界性的热点话题,并在多个方面取得重要进展。它具有稳定的封闭笼状结构,被认为在星际空间广泛存在。富勒烯的形成条件特殊,普通的地球环境和地质过程不利于富勒烯的生成。1992年天然富勒烯在俄罗斯前寒武纪地层桑加岩(Shungite)中被发现,引起了人们对天然富勒烯研究的兴趣。随着富勒烯在陨石和撞击构造中的发现,人们更加关注事件地层中富勒烯存在的可能性以及它们的可能来源。二叠纪—三叠纪(P-T)之交发生了地质历史上规模最大的生物灭绝事件,因此,学者十分关注P-T界线地层中是否能检测到天然富勒烯的的存在。文章回顾了富勒烯在陨石、撞击构造、K-T界线地层和P T界线地层的研究进展,并重点对P-T界线富勒烯的存在问题进行讨论,指出从样品采集到样品测试,每一个环节都可能影响富勒烯的检出。P-T界线地层富勒烯可能源于陨石撞击、天然大火等极端地质事件,而包裹在富勒烯碳笼的稀有气体的同位素组成提供了进一步区分的重要证据。事件地层中普遍存在富勒烯,表明天然富勒烯可以作为地层中发生过重大灾变事件的重要的地球化学指标,而具有异常稀有气体同位素组成的富勒烯则是地外撞击事件的最直接证据。  相似文献   

7.
Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites (“sub-Q”), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from “normal” Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K.Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal event also cannot be responsible for the low abundances of presolar grains. KLE 98300 may have started out with smaller amounts of presolar grains than Qingzhen and Indarch.  相似文献   

8.
Four ureilites (Dyalpur, Goalpara, Haverö, and Novo Urei) were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, and U. An attempt has been made to resolve the data into contributions from the parent ultramafic rock and the injected, carbon- and gas-rich vein material. Interelement correlations, supported by analyses of separated vein material (WANKE et al, 1972), suggest that the vein material is enriched about 10-fold in refractory Ir and Re over moderately volatile Ni and Au, and is low in volatiles except Ge, C, and noble gases. It appears to be a refractory-rich nebular condensate that precipitated carbon by surface catalytic reactions at ˜500K and trapped noble gases but few other volatiles. The closest known analogue is a Cr- and C-rich fraction from the Allende meteorite, highly enriched in heavy noble gases and noble metals. By analogy with Allende, the gas-bearing phase in ureilites may have been an Fe, Cr-sulfide.

The ultramafic rock contains siderophiles and chalcophiles (Ni, Au, Ge, S, Se) at ˜0.05 of Cl chondrite level, and highly volatile elements (Rb, Cs, Bi, Tl, Br, Te, In, Cd) at ˜0.01 Cl level. It probably represents the residue from partial melting of a C3V-like chondrite body, under conditions where phase separation was incomplete so that some liquid was retained. The vein material was injected into this rock at some later time.  相似文献   


9.
A laser microprobe capable of analysing nitrogen and noble gases in individual grains with masses less than a milligram is described. It can be used in both continuous wave (CW) mode, useful for stepwise heating of an individual grain, as well as in pulsed mode, useful for ablating material from a small selected area of a sample, for gas extraction. We could achieve low blanks (in ccSTP units) for 4He(4.8 x 10{-12}),22Ne(1.0 x 10{-12}),36Ar(1.0 x10 -13),84Kr(2.9 x 10{-14}),132 Xe(2.6 x 10{-14}), and N (87 pg), using this system. Preliminary data for individual chondrules from the Dhajala meteorite show that noble gases and nitrogen from grains as small as 170 microgram can be analysed using the present laser microprobe setup. The amount of trapped neon in Dhajala chondrules is very small, and nitrogen in the chondrules is isotopically heavier as compared to the bulk meteorite.  相似文献   

10.
11.
微量陨石激光熔样稀有气体测定方法是一种可以在微米尺度上对几毫克陨石样品进行准确稀有气体同位素分析的方法,克服了传统全岩熔融法在测量时存在样品用量大、前处理过程复杂和样品稀有气体分布不均导致不同组分的宇宙射线暴露历史无法进一步区分等问题。但是由于该方法所用样品体积小和样品用量低,要求实验室具有超低本底的稀有气体提取系统,目前国内在微量陨石稀有气体分析技术方面尚处于起步阶段。本文采用金刚石激光样品窗成功研制了超低本底的气体提取系统,通过系统体积标定和天平称量误差、热本底、干扰元素、质量歧视及质谱灵敏度等参数的校正,在中国科学院地质与地球物理研究所建立了微量陨石激光熔样稀有气体测定方法,并对毫克级微量钙长辉长无球粒陨石Millbillillie粉末标样进行了稀有气体同位素含量和比值测定,计算获得准确一致的宇宙暴露年龄。该方法的建立,将为我国迅速发展的比较行星学和深空探测提供重要技术支撑。  相似文献   

12.
We have prepared a HF-HCl residue and its oxidized residue of the Allende meteorite and have measured the elemental concentrations and the isotopic compositions of noble gases. In the HF-HCl reside, noble gases are enriched in colloidal fraction compared to the non-colloidal fraction by a factor of 2-4. The heavy noble gases were evidently lost after the oxidization, indicating that phase Q (carrier of planetary heavy noble gases) was removed by the oxidation. The Raman spectroscopic parameters show that the colloidal fraction of the HF-HCl residue is more amorphous compared to the non-colloidal fraction. As the ion irradiation converts carbon into a more amorphous form, our result indicates that the “plasma model” is more plausible than the “labyrinth model” as the origin of phase Q. TEM (Transmission Electron Microscope) observations also show such a trace of ion irradiation. While the TEM observations did not show any large difference between the HF-HCl residue and its oxidized residue, the Raman spectroscopic parameters changed discretely resulting from the oxidization. This observation indicates that the oxidization not only dissolved and removed oxidized carbon, but also changed the carbon structure itself to a more amorphous (disordered) state. The Raman spectroscopic results indicate the possibility that release of Q-gas during oxidation is not accompanied by mass loss and that the release of Q-gas simply resulted from rearrangement of carbon structure during oxidation.  相似文献   

13.
Since about half a century samples from the lunar and asteroidal regoliths been used to derive information about elemental and isotopic composition and other properties of the present and past solar wind, predominantly for the noble gases and nitrogen. Secular changes of several important compositional parameters in the solar wind were proposed, as was a likely secular decrease of the solar wind flux. In 2004 NASA’s Genesis mission returned samples which had been exposed to the solar wind for almost 2.5 years. Their analyses resulted in an unprecendented accuracy for the isotopic and elemental composition of several elements in the solar wind, including noble gases, O and N. The Genesis data therefore also allow to re-evaluate the lunar and meteorite data, which is done here. In particular, claims for long-term changes of solar wind composition are reviewed.Outermost grain layers from relatively recently irradiated lunar regolith samples conserve the true isotopic ratios of implanted solar wind species. This conclusion had been made before Genesis based on the agreement of He and Ne isotopic data measured in the aluminum foils exposed to the solar wind on the Moon during the Apollo missions with data obtained in the first gas release fractions of stepwise in-vacuo etch experiments. Genesis data allowed to strengthen this conclusion and to extend it to all five noble gases. Minor variations in the isotopic compositions of implanted solar noble gases between relatively recently irradiated samples (<100 Ma) and samples irradiated billions of years ago are very likely the result of isotopic fractionation processes that happened after trapping of the gases rather than indicative of true secular changes in the solar wind composition. This is particularly important for the 3He/4He ratio, whose constancy over billions of years indicates that hardly any 3He produced as transient product of the pp-chains has been mixed from the solar interior into its outer convective zone. The He isotopic composition measured in the present-day solar wind therefore is identical to the (D + 3He)/4He ratio at the start of the suns’s main sequence phase and hence can be used to determine the protosolar D/H ratio.Genesis settled the long-standing controversy on the isotopic composition of nitrogen in lunar regolith samples. The 15N/14N ratio in the solar wind as measured by Genesis is lower than in any lunar sample. This proves that nitrogen in regolith samples is dominated by non-solar sources. A postulated secular increase of 15N/14N by some 30% over the past few Ga is not tenable any longer. Genesis also provided accurate data on the isotopic composition of oxygen in the solar wind, invaluable for cosmochemisty. These data superseded but essentially confirmed one value – and disproved a second one – derived from lunar regolith samples shortly prior to Genesis.Genesis also confirmed prior conclusions that lunar regolith samples essentially conserve the true elemental ratios of the heavy noble gases in the solar wind (Ar/Kr, Kr/Xe). Several secular changes of elemental abundances of noble gases in the solar wind had been proposed based on lunar and meteoritic data. I argue here that lunar data – in concert with Genesis – provide convincing evidence only for a long-term decrease of the Kr/Xe ratio by almost a factor of two over the past several Ga. It appears that the enhancement of abundances of elements with a low first ionisation potential in the solar wind (FIP effect) changed with time.Finally, Genesis allows a somewhat improved comparison of the present-day flux of solar wind Kr and Xe with the total amount of heavy solar wind noble gases in the lunar regolith. It remains unclear whether the past solar wind flux has been several times higher on average than it is today.  相似文献   

14.
All of the eighteen possible seven-carbon acyclic primary α-amino alkanoic acids have been positively identified in a hot-water extract of the Murchison meteorite by the combined use of gas chromatography-mass spectrometry, ion exchange chromatography and reversed-phase chromatography. None of these amino acids has previously been found in meteorites or in any other natural material. They range in concentration from ≤0.5 to 5.3 nmol g−1. Configuration assignments were made for 2-amino-3,4-dimethylpentanoic acid and allo-2-amino-3,4-dimethylpentanoic acid and the diasteromer ratio was determined. Fifty-five amino acids have now been positively identified in the Murchison meteorite, 36 of which are unknown in terrestrial materials. This unique suite of amino acids is characterized by the occurrence of all structural isomers within the two major classes of amino acids represented, by the predominance of branched chain isomers, and by an exponential decline in amount with increasing carbon chain length within homologous series. These characteristics of the Murchison amino acids are suggestive of synthesis before incorporation into a parent body.  相似文献   

15.
陨石原始型惰性气体的研究进展——Q气及其携带物特征   总被引:1,自引:1,他引:0  
陨石中的原始型惰性气体是在陨石形成前或陨石形成期间,组成陨石的物质通过吸附、溶解等方式将原始太阳星云中的惰性气体保留在陨石中形成的。实验研究发现,球粒陨石中的原始型惰性气体浓集中一种称为Q相的物质中,因此在原始型惰性气体中占绝对优势的组分被称为Q气或P1气。介绍了陨石原型惰性气体概念的由来、Q相的发现经过、Q相的成分和在球粒陨石中的存在部位以及Q气的元素丰度和同位素组成。并根据不同类型损石中Q气的分配情况,对其成因意义进行了讨论。  相似文献   

16.
Analytical results for the material of the Chelyabinsk meteorite   总被引:1,自引:0,他引:1  
This paper presents the results of the mineralogical, petrographic, elemental, and isotopic analysis of the Chelyabinsk meteorite and their geochemical interpretation. It was shown that the meteorite can be assigned to LL5-group ordinary chondrites and underwent moderate shock metamorphism (stage S4). The Chelyabinsk meteorite contains a significant fraction (approximately one-third by volume) of shock-melted material similar in composition to the main volume of the meteorite. The results of isotopic analysis suggest that the history of meteorite formation included an impact event approximately 290 Ma ago.  相似文献   

17.
Noble gases trapped in meteorites are tightly bound in a carbonaceous carrier labeled “phase Q.” Mechanisms having led to their retention in this phase or in its precursors are poorly understood. To test physical adsorption as a way of retaining noble gases into precursors of meteoritic materials, we have performed adsorption experiments for Ar, Kr, and Xe at low pressures (10−4 mbar to 500 mbar) encompassing pressures proposed for the evolving solar nebula. Low-pressure adsorption isotherms were obtained for ferrihydrite and montmorillonite, both phases being present in Orgueil (CI), for terrestrial type III kerogen, the best chemical analog of phase Q studied so far, and for carbon blacks, which are present in phase Q and can be considered as possible precursors.Based on adsorption data obtained at low pressures relevant to the protosolar nebula, we propose that the amount of noble gases that can be adsorbed onto primitive materials is much higher than previously inferred from experiments carried out at higher pressures. The adsorption capacity increases from kerogen, carbon blacks, montmorillonite to ferrihydrite. Because of its low specific surface area, kerogen can hardly account for the noble gas inventory of Q. Carbon blacks in the temperature range 75 K-100 K can adsorb up to two orders of magnitude more noble gases than those found in Q. Irreversible trapping of a few percent of noble gases adsorbed on such materials could represent a viable process for incorporating noble gases in phase Q precursors. This temperature range cannot be ruled out for the zone of accretion of the meteorite precursors according to recent astrophysical models and observations, although it is near the lower end of the temperatures proposed for the evolving solar nebula.  相似文献   

18.
Trapped and cosmogenic Ne and Ar were measured in Ca,Al-rich aggregates and chondrules, mafic chondrules, and bulk and matrix samples from the Allende C3V chondritic meteorite to investigate the possible occurrence of anomalous isotopic compositions of noble gases that would correlate with oxygen or magnesium isotopic anomalies previously found in this meteorite.Large enrichments of both 22Ne and 36Ar were observed in low-temperature release fractions from several Ca,Al-rich inclusions, but the enrichments are consistent with galactic cosmic-ray production of 22Ne by spallation from sodium and 36Ar by neutron capture on chlorine. Trapped neon in matrix samples is comprised of two distinctive compositions, with (20Ne/22Ne)t equal to 8.7 ± 0.1 and 10.4 ± 1.0, that appear to correlate with the two gas-rich trace phases chromite/carbon and ‘Q’ described by Lewis et al. (1975). Several Ca,Al-rich aggregates which have high contents of the volatile elements Na, Cl, K, and Rb also contain trapped neon. However, no neon-E has been identified in any of the samples studied, including samples of several inclusions known to contain isotopically anomalous oxygen and magnesium.  相似文献   

19.
A selection of evidence, including a carbon isotopic excursion, iridium anomaly, fullerenes (C60 and C70) with trapped noble gasses, microspherules and shocked quartz, is discussed in this paper. All the evidence in hand favors the hypothesis that the PTB event was probably related to an extraterrestrial cause, and the impact would lead to great physical change, including large volcanic eruptions. on the earths surface. The ET markers for the CTB event could be considered only as an example, and cannot be taken as a unique standard of an ET event.  相似文献   

20.
The Sulagiri meteorite fell in India on 12 September 2008,LL6 chondrite class is the largest among all the Indian meteorites.Isotopic compositions of noble gases(He,Ne,Ar,Kr and Xe) and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed.Low cosmogenic(~(22)Ne/~(21)Ne)_c ratio is consistent with irradiation in a large body.Cosmogenic noble gases indicate that Sulagiri has a 4πcosmic-ray exposure(CRE) age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of IX chondrites.Radiogenic ~4He and ~(40)Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and4.56 Ca,indicating the loss of He from the meteorite.Xenon and krypton are mixture of Q and spallogenic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号