首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Kharcheruz block of the Syumkeu ultramafic massif is a southern fragment of the Khadata ophiolitic belt, which closes the ophiolites of the Polar Urals in the north. The block, striking in the latitudinal direction, is sheetlike in shape and primarily composed of dunite with nearly latitudinal zones of chromite mineralization. The dunites are subject to ductile deformation various in intensity, and this variability is displayed in their heterogeneous structure and texture. The following microstructural types are distinguished by the variety and intensity of their deformation: protogranular → mesogranular → porphyroclastic → porphyrolath → mosaic. The petrostructural patterns of olivines pertaining to the above types reflect conditions of ductile deformation. Protogranular dunite is formed as a product of pyroxene decomposition in mantle harzburgite accompanied by annealing recrystallization at a temperature above 1000°C. Mesogranular dunite is formed as a product of high-temperature plastic flow by means of translation sliding in olivine and diffuse creep at a temperature dropping from 1000 to 650°C and at a low rate (<10–6 s–1). Cr-spinel segregates into linear zones of disseminated chromite mineralization within zones of bedding-plane plastic flow. Porphyroclastic and mosaic dunites are formed under conditions of intense deformation at a temperature of 500–750°C and at a significant rate (>10–6 s–1). Dunite is deformed by means of syntectonic recrystallization and subordinate translation gliding. Linear zones of disseminated mineralization undergo destruction thereby, with the formation of lenticular chromitite bodies from which ductile olivine is squeezed out with the formation of densely impregnated and massive ores.  相似文献   

2.
The morphology and internal structure of individual olivine grains from ultramafic rocks in the Guli and Gal’moenan dunite massifs differing in origin are considered. To restore the ontogeny of mineral aggregates, traces of elastic deformation retained in mineral grains have been used. Comparison of anatomy of olivine grains from these two massifs showed that the mechanism of accommodation of rocks to changing geological settings is expressed as the response of the mineral aggregate structure and variation in the anatomy of individual mineral grains. At the level of individual grains, this is annihilation of older defects and origination of younger dislocations; refinement of the crystal lattice; exsolution; formation and transformation of new mineral phases; and creep and migration of subboundaries within grains. At the aggregate level, this is rotation and migration creep of the internal boundaries of rock; formation of new boundaries of mineral intergrowths; reorientation of boundaries; and variation in their extent, density, and grain dimensions. The prehistory of massifs controls the manifestation and abundance of various elastic deformations and related types of recrystallization of olivine grain boundaries and subboundaries in aggregates. New conditions and accommodation of mineral aggregates to these conditions have instigated specific schemes of recrystallization, which bear information on the history of rocks and their massifs.  相似文献   

3.
The results of the structural study of the Nizhny Tagil platiniferous massif in the Central Urals are presented. This is a classic massif of the Ural-Alaskan-type zonal dunite-clinopyroxenite complexes. The massif is characterized by a nearly concentric vertical planar internal structure conformable to petrographic zoning (layering). The primary ultramafic rocks are distinguished by adcumulative protogranular structure with relict euhedral olivine protocrysts and distinct linear orientation of minerals, which was formed as a result of magmatic flow. The deformational linear and planar structures conformable to the early structural elements were formed in the process of subsequent coaxal high-temperature ductile flow. At this stage, dynamometamorphic zoning is formed, expressed in the change of the protogranular microstructure typical of the inner portion of the massif by porphyroclastic and mosaic microstructures in its marginal part. The country rocks underwent conjugate high-temperature metamorphism with the formation of hornfels and kytlymite. The structure of the massif is considered to be a result of dynamic differentiation in the course of magmatic flow followed by high-temperature coaxal flow during intrusive and diapiric ascent of rocks to the crustal level.  相似文献   

4.
西藏雅鲁藏布江缝合带东段泽当地幔橄榄岩特征及其意义   总被引:1,自引:1,他引:0  
泽当岩体位于雅鲁藏布江缝合带东段,主要由地幔橄榄岩、辉长辉绿岩和基性火山岩等组成。地幔橄榄岩主要为方辉橄榄岩和二辉橄榄岩,有少量透镜状纯橄岩。地幔橄榄岩经历了强烈的塑性变形作用。地幔橄榄岩中橄榄石的Fo值为89.6~91.8,属镁橄榄石;斜方辉石为顽火辉石,En 87.8~90.3;单斜辉石En 44.1~50.0,主要为顽透辉石和透辉石。铬尖晶石的Cr#值(=100×Cr/(Cr+Al))为17.0~93.6,其中,二辉橄榄岩和方辉橄榄岩中的铬尖晶石为富铝型尖晶石,纯橄岩中的铬尖晶石Cr#最高,为富铬型尖晶石。地幔橄榄岩的部分熔融程度为17%~34%,表明泽当地幔橄榄岩可能经历了多阶段的过程。亏损的主量元素组成和低于原始地幔的稀土元素含量(0.15×10-6~0.61×10-6)指示泽当地幔橄榄岩为经历过部分熔融和熔体抽取的亏损残余地幔岩石。REE配分型式为中稀土亏损的"V"型或"U"型,原始地幔标准化元素比值(La/Sm)N为0.5~8.0,表明泽当地幔橄榄岩经历过交代作用。矿物化学与地球化学数据表明泽当地幔橄榄岩形成于MOR环境,后受到SSZ环境的改造。  相似文献   

5.
The Qinling Orogenic Belt was formed by subduction and collision between the North and South China Blocks along the Shangdan suture. The Songshugou ultramafic massif located on the northern side of the Shangdan suture provides essential insights into the mantle origin and evolutionary processes during spreading and subduction of the Shangdan oceanic lithosphere. The ultramafic massif comprises harzburgite, coarse- and fine-grained dunites. The spinels from harzburgite exhibit low Cr# and high Mg# numbers, suggesting a mid-ocean ridge peridotite origin, whereas spinels from both coarse- and fine-grained dunites are indicated as resulted from melt-rock reaction due to their systematic higher Cr# and low Mg# numbers. This melt-rock reaction in the dunites is also indicated by the low TiO2 (mostly <0.4 wt%) in the spinel and high Fo (90–92) in olivines. Due to its relatively homogeneous nature in the mantle, oxygen isotopic composition is a sensitive indicator for the petrogenesis and tectonic setting of the Songshugou ultramafic rocks. Based on in-situ oxygen isotope analyses of olivines from twenty-six rock samples, most harzburgites from the Songshugou ultramafic massif show low δ18O values of 4.54–5.30‰, suggesting the olivines are equilibrium with N-MORB magmas and originally formed in a mid-ocean ridge setting. The coarse- and fine-grained dunites exhibit slightly higher olivine δ18O values of 4.69–6.00‰ and 5.00–6.11‰, respectively, suggesting they may have been modified by subduction-related boninitic melt-rock reaction. The δ18O values of olivines systematically increasing from the harzburgites, to coarse-grained dunites and fine-grained dunites may suggest enhancing of melt-rock reaction. The decreasing of Os concentration, 187Re/188Os and 187Os/188Os ratios from harzburgite to dunite suggest an 187Os-enriched, subduction zone melt was responsible for creating the melt channel for melt-rock reactions. Together with the high-temperature ductile deformation microstructures, these isotopic and mineral geochemical features suggest that the harzburgites represent mantle residues after partial melting at mid-ocean ridge or supra-subduction zone, while the dunites were probably resulted from reactions between boninitic melt and harzburgites in a supra-subduction zone. Re-Os geochronology yields a maximum Re depletion model age (TRD) of 805 Ma, constraining the minimum formation age of the harzburgites derived from oceanic mantle. Eight samples of whole rock and chromite yield a Re-Os isochron age of 500 ± 120 Ma, constraining the timing of melt-rock reactions. Combined with the regional geology and our previous investigations, the Songshugou ultramafic rocks favors a mantle origin at mid-ocean ridge before 805 Ma, and were modified by boninitic melt percolations in a SSZ setting at ca. 500 Ma. This long-term tectonic process from spreading to subduction might imply a huge Pan-Tethyan ocean between the Laurasia (e.g., North China Block) and Gondwana (e.g., South China Block) and/or a one-side subduction.  相似文献   

6.
The role of aqueous fluid in fracturing in subducting slabs was investigated through a series of deformation experiments on dunite that was undersaturated (i.e., fluid-free) or saturated with water (i.e., aqueous-fluid bearing) at pressures of 1.0–1.8 GPa and temperatures of 670–1250 K, corresponding to the conditions of the shallower regions of the double seismic zone in slabs. In situ X-ray diffraction, radiography, and acoustic emissions (AEs) monitoring demonstrated that semi-brittle flow associated with AEs was dominant and the creep/failure strength of dunite was insensitive to the dissolved water content in olivine. In contrast, aqueous fluid drastically decreased the creep/failure strength of dunite (up to ~?1 GPa of weakening) over a wide range of temperatures in the semi-brittle regime. Weakening of the dunite by the aqueous fluid resulted in the reduction of the number of AE events (i.e., suppression of microcracking) and shortening of time to failure. The AE hypocenters were located at the margin of the deforming sample while the interior of the faulted sample was aseismic (i.e., aseismic semi-brittle flow) under water-saturated conditions. A faulting (slip rate of ~?10?3 to 10?4 s?1) associated with a large drop of stress (Δσ?~?0.5 to 1 GPa) and/or pressure (ΔP?~?0.5 GPa) was dominant in fluid-free dunite, while a slow faulting (slip rate?<?8?×?10?5 s?1) without any stress/pressure drop was common in water-saturated dunite. Aseismic semi-brittle flow may mimic silent ductile flow under water-saturated conditions in subducting slabs.  相似文献   

7.
The application of the principle and algorithm of the cluster analysis of rock compositions in magmatic complexes, which were described elsewhere, made it possible to reveal the spaceless and spatial geochemical structure of the Yoko-Dovyren layered mafic-ultramafic massif. The diversity of rocks composing this intrusion was demonstrated to comprise eleven discrete geochemical types (clusters): dunites, harzburgites, melanotroctolites, troctolites, two types of olivine gabbro, two types of olivine gabbronorites, quartz gabbronorites, and granophyres. These geochemical types of rocks and the corresponding fractionation parameters (the iron atomic fraction f of mafic minerals and the anorthite concentration An of plagioclase) define a succession corresponding to the tendencies in the crystallization of a magma of respective composition. This geochemical succession is in complete agreement with the succession in which rocks were formed in the intrusion (from dunite in its bottom part to quartz gabbronorites and granophyres near its roof) and is complicated by cyclical repetitions. The main tendency revealed in the cyclic layering is as follows: cyclical intercalations consist of rocks corresponding to the neighboring members of the rock succession (plagiodunites and melanotroctolites, melanotroctolites and troctolites, troctolites and olivine gabbro, olivine gabbro and olivine gabbronorites). These tendencies are closely similar to those identified in the Kivakka intrusion, a fact suggesting that these tendencies can be common for all layered complexes of mafic and ultramafic rocks. Original Russian Text ? A.A. Yaroshevskii, S.V. Bolikhovskaya, E.V. Koptev-Dvornikov, 2006, published in Geokhimiya, 2006, No. 10, pp. 1027–1039.  相似文献   

8.
苏鲁超高压变质带胡家林超镁铁质岩成因及构造意义   总被引:1,自引:1,他引:0  
胡家林超镁铁质杂岩体产于苏鲁超高压变质带中部,纯橄岩和(石榴)单斜辉石岩呈不连续透镜体产于蛇纹石化橄榄岩中。纯橄岩遭受了部分蛇纹石化(烧失量=6.6%~13.2%),全岩富集强相容元素(Ni、Cr、Co)和Ir族PGE(IPGE;Ir、Os、Ru)及高IPGE/PPGE值,亏损Al、Ti、V,具高Mg~#橄榄石(Fo=91.7~92.4)和高Cr~#(0.68~0.76)尖晶石。纯橄岩高耐熔地球化学及矿物化学特征和古老的大陆岩石圈地幔相一致,表明其原岩来源于弧前地幔,代表了华北克拉通古老的大陆岩石圈地幔残留。(石榴)单斜辉石岩全岩呈相对低含量的强相容元素(Cr、Ni、Co)和IPGE,高含量的Al、Ti、V和流体迁移元素(Sr、Pb和Ba),球粒陨石标准化REE配分图呈明显"上凸"型,具低Mg~#橄榄石(Fo=76.6~76.8)和低Al_2O_3(2.76%)和高SiO_2(54.56%~56.87%)的单斜辉石。全岩组成和矿物化学表明其原岩为俯冲带内超镁铁质火成堆晶岩,最初岩浆由地幔岩高程度部分熔融的熔体和俯冲带中富H_2O流体和/或熔体构成。(石榴)单斜辉石岩原岩曾被地幔流带入扬子大陆俯冲板片和上覆地幔楔之间的俯冲通道,经历了超高压变质作用和生成大量石榴石。(石榴)单斜辉石岩在折返过程中,与大陆岩石圈地幔楔剥离的蛇纹石化橄榄岩及纯橄岩相结合,形成超镁铁质杂岩体,整体被低密度的俯冲板片(主要由花岗质片麻岩和变质沉积岩组成)裹挟,折返至地壳浅部。  相似文献   

9.
徐向珍  杨经绥  郭国林  李金阳 《岩石学报》2011,27(11):3179-3196
西藏雅鲁藏布江缝合带西段普兰蛇绿岩以出现面积约600余平方千米的特大型地幔橄榄岩体而引人注目.该地幔橄榄岩以方辉橄榄岩为主体,含有少量的二辉橄榄岩和纯橄榄岩,岩体中另有一些橄榄单斜辉石岩、辉长岩和辉绿岩等侵入体.地幔橄榄岩的主要造岩矿物橄榄石的Fo 90~93,其中呈包裹体的橄榄石的Fo略高,斜方辉石为顽火辉石(En 88~90),单斜辉石主要为顽透辉石和透辉石,以低铝(0.48%~3.96%)和高Mg#(91~96)为特征,铬尖晶石的Cr#值为18~69,其中方辉橄榄岩和二辉橄榄岩中的铬尖晶石属富铝型尖晶石,而纯橄岩中为富铬型尖晶石.橄榄单斜辉石岩的橄榄石Fo值一致较低,平均为88.4,斜方辉石En平均87,单斜辉石以透辉石为主,铬尖晶石的Cr#值为45~69.普兰地幔橄榄岩及橄榄单斜辉石岩都具有相似的稀土元素和微量元素配分模式,表现为LREE相对富集,Eu亏损不明显,微量元素中大离子亲石元素含量较低,部分样品高场强元素亏损,另一些则相对富集,显示地幔橄榄岩具有亏损地幔源区特征,但也具有俯冲带流体的交代特征,表明普兰岩体可能经历了MOR和SSZ两种构造环境,该特征与雅鲁藏布江缝合带东段的罗布莎地幔橄榄岩的特征可以对比.  相似文献   

10.
Diopside single-crystals, oriented favorably for twin gliding on both systems: (001) [100] and (100)[001] have been deformed in a Griggs apparatus using talc as pressure medium. The latter mechanism is dominant at temperatures (T) below 1050° C at strain rates () of 10−3 sec−1, and below 800° C at ; at higher temperatures translation gliding on (100)[001] accompanied by syntectonic recrystallization is dominant but other glide systems also operate. Tests at a single set of conditions, T- and -incremental tests and stress-relaxation experiments have been carried out on websterite (68% CPX, 32% OPX), both in talc (“wet”) and talc-AlSiMag (“dry”) assemblies. Most tests were performed in the high-T regime, where syntectonic recrystallization and “relatively nonselective” glide are dominant. The mean size of recrystallized clinopyroxenes (D, μm) appears to be related to stress (σ, kb) as D = 60σ−0.9. The mechanical data fit the power law exp(-Q/RT)σn, where for the “wet” experiments A = 105.9kb−nsec−1, Q = 91.2 kcal/mole, n = 5.3; for σ < 3.5 kb n appears to decrease to 3.3. For the “dry” experiments A = 102.2, Q = 77.9, and n = 4.3 for σ < 7.0 kb. Clinopyroxene in the upper mantle occurs as ca. 0–15% mixed phase in peridotites and websterites occur as thin layers. Stresses in these materials will then be near those in the olivine-rich matrix. At , the equivalent viscosity of dry websterite is less than that of dry dunite at depths to 60 km but it increases rapidly at higher pressures; at 240 km it is 106 greater than that of dunite. This may account for the low strains and passive behavior observed for clinopyroxene crystals in most peridotites and websterites, that presumably have formed at great depth. Attenuated folds of websterite in peridotite—evidence of more ductile behavior—may then have formed at shallower levels; alternatively they may have formed under “wet” conditions.  相似文献   

11.
Abundant sill-like bodies of serpentinized ultramafic rocks, with associated nickel sulfide deposits, are found on the western side of the Thompson Nickel Belt near the Moak Lake-Setting Lake cataclastic fault zone. The ultramafic rocks range in composition from dunite to orthopyroxenite and feature variable alteration. Chemical variation across the bodies is suggestive of in-situ differentiation controlled mainly by olivine and orthopyroxene. Relative abundances of some elements, incompatible for olivine and orthopyroxene, suggest a parental liquid of komatiitic affinity. Ultramafic and mafic rocks are petrogenetically linked. A high degree of partial melting of mantle material and subsequent low-pressure crystal fractionation are responsible for the spectrum of composition from ultramafic to mafic.Publication 19-84, Ottawa-Carleton Centre for Geoscience Studies  相似文献   

12.
北秦岭松树沟橄榄岩与铬铁矿矿床的成因关系   总被引:2,自引:1,他引:1  
李犇  朱赖民  弓虎军  郭波  杨涛  王飞  王伟  徐奥 《岩石学报》2010,26(5):1487-1502
松树沟橄榄岩体是秦岭造山带中规模最大的赋存铬铁矿床的超基性岩体。松树沟橄榄岩主要由细粒橄榄岩质糜棱岩和中粗粒橄榄岩组成。本文通过对松树沟橄榄岩的岩相学、主微量、稀土元素地球化学的系统研究,认为松树沟细粒方辉橄榄岩为洋脊扩张过程中地幔岩减压-近分离熔融产生的残留体,细粒纯橄岩主要由地幔橄榄岩熔融残留橄榄石、消耗辉石的减压熔融反应:aCpx+bOpx+cSpl=dOl+1Melt生成的橄榄石和少量的地幔方辉橄榄岩残留体组成,但均受到了后期渗滤熔体的再富集作用;中粗粒纯橄岩和方辉橄榄岩主要为上述反应产生的渗滤熔体被圈闭在迁移通道或减压扩容带内在热边界层(TBL)通过反应:MeltA=Ol+MeltB冷凝结晶而成,属堆晶橄榄岩。Pb-Sr-Nd同位素地球化学的证据显示,松树沟橄榄岩与基性岩具有共同的地幔源区,二者同为松树沟蛇绿岩的重要组成部分。通过矿床地质特征及铬铁矿电子探针测试研究,认为松树沟铬铁矿床是产于中粗粒堆晶纯橄岩中的层状铬铁矿床,形成于格林威尔期松树沟洋盆的扩张过程中,是中粗粒纯橄岩在热边界层(TBL)的冷凝结晶过程中岩浆分异作用的产物。  相似文献   

13.
青海省哇洪山断裂带中段构造变形特征及X光岩组分析   总被引:3,自引:0,他引:3  
通过对哇洪山断裂带中段构造变形宏观及微观特征的研究,认为该断裂带经历了两种不同层次、不同性质的构造变形,早期以韧性变形为主,形成了沿断裂带广泛分布的NW-NNW向糜棱岩带;晚期以脆性变形为主,形成了广泛分布断层破碎带,并将早期的糜棱岩带错断。X光岩组分析结果表明,糜棱岩带构造岩内矿物排列定向性明显,其中石英变形以底面滑移或近底面滑移为主,兼有柱面滑移,为中低温-中温变形环境所形成;另外动态重结晶对变形岩石中石英优选方位的形成也可能发挥了重要作用。华里西晚期花岗闪长岩、印支期钾长花岗岩、花岗岩、二长花岗岩均没有明显的优选方位,因此韧性变形发生在该类岩石侵位之前。构造变形分析及同位素测年结果证实韧性剪切带形成于晚志留世,即加里东晚期。  相似文献   

14.
东波超镁铁岩体产在雅鲁藏布江缝合带的西段,与周边白垩纪沉积岩地层和火山岩以断层接触.航磁资料显示该岩体约400km2规模,地表出露连续,地下有一定延深.超镁铁岩体由亏损的地幔橄榄岩组成,主要有高镁的方辉橄榄岩、纯橄岩和少量二辉橄榄岩.方辉橄榄岩和二辉橄榄岩中橄榄石和斜方辉石属高镁型,分别为Fo=89.5~91.5和Mg#=90~91.5.但二辉橄榄岩中的Al2O3和CaO含量明显高于方辉橄榄岩.方辉橄榄岩中单斜辉石Mg#=92~95,二辉橄榄岩的Mg#=92~93,两者的值也重叠.二辉橄榄岩中的Al2O3和CaO含量要明显高于方辉橄榄岩.这些均为阿尔卑斯型地幔橄榄岩的典型特征.纯橄岩中的橄榄石Fo=92~93.2,其斜方辉石和单斜辉石的Mg#=~93,但Al2O3和CaO的含量比方辉橄榄岩和二辉橄榄岩的低.三种岩石的成分变化规律,反映了地幔部分熔融程度的差异.二辉橄榄岩铬尖晶石的Cr#值20~30,反映为典型深海橄榄岩特征,指示MOR环境.与其不同的是,方辉橄榄岩的铬尖晶石的Cr#=20~75,指示MOR和SSZ两者兼有环境.岩石的原始地幔标准化的REE和微量元素蛛网图模式支持了上述的认识.东波地幔橄榄岩中的岩石学特征与产有大型铬铁矿床的罗布莎地幔橄榄岩可对比,岩体中已多处发现块状铬铁矿石,其铬铁矿的Cr2O3含量56%~59%,表明东波是寻找铬铁矿大矿和富矿甚具前景的一个超镁铁岩体.  相似文献   

15.
Intense viscous-ductile deformations with multiorder flow folds and thin banding have been established in lherzolite and harzburgite of the Syumkeu massif 1.0–1.5 km below the boundary with crustal complexes. Intense shear deformation of mantle restites is traced along the entire boundary zone. The mineral composition of lherzolite and harzburgite in this zone occupies a transitional position between peridotite restites and olivine websterite from the lower part of the banded dunite-wehrlite-pyroxenite-gabbro complex. This implies that the mantle rocks from the crust-mantle transition zone were substantially transformed under transpressional intense shear stress settings along with a high-temperature ductile flow of mantle restites interacting with the supplied melt at a depth of more than 10 km. This type of transition zones differs from those known elsewhere in the Urals and supplements our knowledge on modes of mantle restite juxtaposition with crustal plutonic rocks.  相似文献   

16.
Emphasized in this paper are the deformation processes and rheologies of rocks at high temperatures and high effective pressures, conditions that are presumably appropriate to the lower crust and upper mantle in continental collision zones. Much recent progress has been made in understanding the flexure of the oceanic lithosphere using rock-mechanics-based yield criteria for the inelastic deformations at the top and base. At mid-plate depths, stresses are likely to be supported elastically because bending strains and elastic stresses are low. The collisional tectonic regime, however, is far more complex because very large permanent strains are sustained at mid-plate depths and this requires us to include the broad transition between brittle and ductile flow. Moreover, important changes in the ductile flow mechanisms occur at the intermediate temperatures found at mid-plate depths.Two specific contributions of laboratory rock rheology research are considered in this paper. First, the high-temperature steady-state flow mechanisms and rheology of mafic and ultramafic rocks are reviewed with special emphasis on olivine and crystalline rocks. Rock strength decreases very markedly with increases in temperature and it is the onset of flow by high temperature ductile mechanisms that defines the base of the lithosphere. The thickness of the continental lithosphere can therefore be defined by the depth to a particular isotherm Tc above which (at geologic strain rates) the high-temperature ductile strength falls below some arbitrary strength isobar (e.g., 100 MPa). For olivine Tc is about 700°–800°C but for other crustal silicates, Tc may be as low as 400°–600°C, suggesting that substantial decoupling may take place within thick continental crust and that strength may increase with depth at the Moho, as suggested by a number of workers on independent grounds. Put another way, the Moho is a rheological discontinuity. A second class of laboratory observations pertains to the general phenomenon of ductile faulting in which ductile strains are localized into shear zones. Ductile faults have been produced in experiments of five different rock types and is generally expressed as strain softening in constant-strain-rate tests or as an accelerating-creep-rate stage at constant differential stress. A number of physical mechanisms have been identified that may be responsible for ductile faulting, including the onset of dynamic recrystallization, phase changes, hydrothermal alteration and hydrolytic weakening. Microscopic evidence for these processes as well as larger-scale geological and geophysical observations suggest that ductile faulting in the middle to lower crust and upper mantle may greatly influence the distribution and magnitudes of differential stresses and the style of deformation in the overlying upper continental lithosphere.  相似文献   

17.
The Wenquan ultramafic rocks, located in the East Kunlun Orogenic belt in the northeastern part of the Qinghai‐Tibet Plateau, consist of dunite, wehrlite, olivine‐clinopyroxenite and clinopyroxenite, and exhibit cumulate textures. Olivine from dunite has high Fo (forsterite, 90–92) and NiO (0.15–0.42 wt%) contents. Cr‐spinels from all of the rocks in this suite are characterized by high Cr# (100×[Cr/(Cr+Al)], 67–91), low Mg# (100×[Mg/(Mg+Fe2+)], 17–35) and low TiO2 contents (mostly < 0.5 wt%). Clinopyroxenes display high Mg# (92–98) and low TiO2 contents (0.002–0.099 wt%), similar to those in ophiolitic cumulates. Geochemically, the Wenquan ultramafic rocks show enrichment of LILE, Sr, and Ba, and depletion of Nb and Th. Mineral chemistry and geochemistry indicate that the Wenquan cumulates were generated from a depleted mantle and likely evolved from high‐Mg basaltic magmas (Mg#=78) that underwent fractional crystallization and crustal contamination. Zircons from clinopyroxenites yield a U–Pb weighted mean age of 331 ± 2 Ma, which is nearly coeval with the formation age of the Buqingshan and A'nyemaqen Carboniferous ophiolites. The Wenquan Carboniferous ophiolites are confirmed to exist in the Central East Kunlun Fault zone, whereas previous studies have considered them to be the Proterozoic ophiolites. The Wenquan ultramafic rocks might be an arc cumulates of the Paleo‐Tethyan ocean, indicating that there were two cycles of oceanic–continental evolution along the Central East Kunlun Fault zone. Keywords Ultramafic rock, Cumulate, Ophiolite, East Kunlun Orogenic belt.  相似文献   

18.
The Wahongshan fault zone in Qinghai province is one of the most important faults in westem China. In this paper, deformation and X-ray petrofabrics have been studied in the middle segment of the fault. The results show that the formation of the fault zones can be divided into two major stages: ductile shear deformation stage and brittle deformation stage. The early stage ductile shearing leads to the formation of the NW-NNW trending mylonite zones along the fault, which is intensely cut by the late-formed brittle faults. X-ray petrofabrics of rocks near the faults indicate that the minerals in the tectonites show a great degree of orientation in the alignment. The quartz, which is a very important mineral in the tectonites, is deformed by basal face gliding or near basal face gliding, and sometimes by prismatic face sliding, which indicates that the rocks are deformed in epithermal to mesothermal or mesothermal environment, and the dynamic recrystallization also plays an important role in the formation  相似文献   

19.
Ultramafic/mafic complexes hosting Fe-Ni-Cu mineralization occur as small, lensoidal bodies within the Svecofennian, molasse-like metasedimentary rocks of the Vammala Nickel Belt (VNB) in southwestern Finland. One of them, the Sääksjärvi metaperidotitemetagabbro complex, has been studied to gain a better understanding of their petrogenesis and timing of emplacement. These ultramafic rocks were emplaced before the regional upper-amphibolite-facies metamorphism of the Svecofennian orogeny. They recrystallized to amphibole-dominated assemblages comprising: (1) in metaperidotiteolivine + magnesian hornblende ± chromite ± enstatite ± augite ± phlogopite; (2) in hornblendite-actinolitic hornblende ± augite ± plagioclase ± Fe-Ti oxides; and (3) in metagabbro-actinolitic hornblende + plagioclase ± Fe-Ti oxides ± biotite. The recrystallization was accompanied by changes that involved the formation of a lattice-preferred orientation in olivine and porphyroclastic, poikiloblastic, and equigranular textures.

Geochemical modeling indicates that the ultramafic rocks were derived from a tholeiitic magma (Mg/Mg + Fe = 0.58 to 0.62; Ni = 90 to 120 ppm; low Ti content) by olivine (Fo78-84) accumulation and, in the case of the gabbro differentiates, accumulation of olivine with subordinate clinopyroxene and plagioclase. The geochemical character is that of island-arc low-Ti tholeiites and, like other VNB intrusions, involves enrichment of light-ion-lithophile elements and rare-earth elements relative to high-field-strength elements compared with normalized mid-oceanic-ridge basalts; this is particularly evident in the Nd/Nb, Zr/Nb, and Th/ Nb ratios. In the studied cumulate body, the sheared margins and the contact-parallel foliation indicate that the ultramafic bodies underwent plastic deformation and possibly were displaced along the evolving foliation in the more ductile migmatitic country rocks. This is contrary to previous interpretations of the VNB ultramafic bodies, which have been treated essentially as unmodified in situ magmatic intrusions.  相似文献   

20.
The data on the geochemistry and geochronology of zircons from wehrlites and clinopyroxenites of the dunite–wehrlite–clinopyroxenite banded complex that lies at the base of the crustal section of the ophiolite complex of the Nurali massif are presented. The obtained U–Pb age of the banded complex of 450 ± 4 Ma differs markedly from the previous age data. According to REE distribution patterns zircons from ultramafic rocks are attributed to the magmatic type and they indicate the age and supposed genetic similarity of the above rocks with lherzolites and dunites from the mantle section of the Nurali massif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号