首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The spectacular arrival of a huge meteorite in central Siberia on February 15th 2013 was the largest event of its kind for more than a hundred years. Oxygen isotope analysis reveals the object involved was an ordinary chondrite of type LL. Petrological examination of the material analysed shows two main lithologies, metamorphic grade 5, were present both having veins of shock produced glass. All three types of material were investigated for carbon, nitrogen and noble gas content and isotopic compositions. The relatively low abundance of carbon and nitrogen indicate that Chelyabinsk is uncontaminated by comparison with other samples in meteorite collections so that indigenous components may be recognized. All the samples studied contained minimal amounts of cosmogenic and primordial noble gases, evidence that the pre-atmospheric size of the object was large, greater than two metres in diameter and that the explosion and break-up was accompanied by catastrophic degassing. The implications for other major meteorite falls and the Tunguska event are discussed.  相似文献   

4.
Analytical results for the material of the Chelyabinsk meteorite   总被引:1,自引:0,他引:1  
This paper presents the results of the mineralogical, petrographic, elemental, and isotopic analysis of the Chelyabinsk meteorite and their geochemical interpretation. It was shown that the meteorite can be assigned to LL5-group ordinary chondrites and underwent moderate shock metamorphism (stage S4). The Chelyabinsk meteorite contains a significant fraction (approximately one-third by volume) of shock-melted material similar in composition to the main volume of the meteorite. The results of isotopic analysis suggest that the history of meteorite formation included an impact event approximately 290 Ma ago.  相似文献   

5.
Magnetic properties of the Chelyabinsk meteorite: Preliminary results   总被引:1,自引:0,他引:1  
This paper presents the distribution of magnetic susceptibility, χ0, in fragments of the Chelyabinsk ordinary chondrite (LL5, S4, W0, fall of February 15, 2013) from the collection of the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, and results obtained by standard magnetic techniques for the meteorite material, including thermomagnetic analysis, measurements of natural remanent magnetization (NRM) and saturation isothermal remanent magnetization (SIRM), as well as the spectra of their alternating field demagnetization at amplitudes up to 170 mT, measurements of hysteresis loops and back-field remanence demagnetization curves at temperatures from 10 K to 700°C etc. The mean logχ0 values for the light-colored (main) lithology of the meteorite material and impact-melt breccia from our collection are 4.54 ± 0.10 (n = 66) and 4.65 ± 0.09 (n = 38) (×10?9 m3/kg), respectively. According to international magnetic classification of meteorites, Chelyabinsk falls within the range of LL5 chondrites. The mean metal content was estimated from the saturation magnetization, M s, of the light- and dark-colored lithologies as 3.7 and 4.1 wt %, respectively. Hence, the dark lithology is richer in metal. The metal grains are multidomain at room temperature and show low coercive force, B c (<2 mT) and remanent coercive force, B cr (15–23 mT). The thermomagnetic analyses of the samples showed that the magnetic properties of the Chelyabinsk meteorite are controlled mainly by taenite and kamacite at temperatures >75 K. In the temperature range below 75 K, magnetic properties are controlled by chromite; the magnetic hardness of the samples is maximal at 10 K and equals to 606 and 157 mT for the light- and dark-colored lithologies, respectively.  相似文献   

6.
2013年2月15日,俄罗斯车里雅宾斯克(Chelyabinsk)发生了伴随罕见的空中爆炸的大规模陨石雨事件。本文对3块代表不同冲击变质程度的车里雅宾斯克陨石碎块进行了研究。它们都具有部分熔壳,其中1块仅出现碎裂,1块含有冲击熔融细脉,1块基本由冲击熔融囊和冲击熔脉组成。冲击变质程度最低的样品,代表了该陨石母体小行星的原始岩石矿物学特征:即具有粗粒的岩石结构和均一的矿物化学组成,但仍保留一些残余球粒,表明受到了明显的热变质作用,其岩石类型可划分为5型。铁镁质硅酸盐高的Fe O含量(橄榄石Fa:27.9mol%~28.2mol%,辉石Fs值:23.3mol%~23.7mol%)、以及较低的Fe-Ni金属含量,表明其化学群属于低铁低金属的LL群。我们所分析的样品与前人报导的结果相似,未发现不同岩性的岩屑,表明车里雅宾斯克陨石的原始岩矿特征较为均一。3块陨石碎块中,随着冲击程度的增强,其冲击变质特征依次表现为硅酸盐矿物的破碎、熔长石化更为普遍、陨硫铁与铁镍合金共熔、硅酸盐熔脉的形成、铬铁矿与长石共熔、以及大量熔融囊的发育等。但是,在冲击熔融囊和熔脉中,以及相邻围岩中均未发现高压矿物相。熔脉中的橄榄石晶屑和相邻围岩的橄榄石颗粒表现为化学成分的不均一,在背散射电子图像中呈不同灰度的结构。这与其他强烈冲击变质陨石中橄榄石的林伍德石或瓦茨利石相变相似。该陨石中林伍德石或瓦茨利石的缺失很可能是由于强烈撞击后高温产生的退变质。这也表明车里雅宾斯克陨石的母体小行星可能遭受了非常强烈的撞击事件。  相似文献   

7.
8.
9.
The fragments of the Chelyabinsk meteorite studied are represented by light-gray granular rock of chondritic structure. The chondrules and their cementing matter are mainly constituted by olivine and orthopyroxene. The matrix consists of a pyroxene-olivine aggregate with plagioclase, apatite, melted glass, and the inclusions of ore minerals: taenite, kamacite, troilite, pyrrhotite and pentlandite (more rarely), and individual grains of chromite and ilmenite. The comparison of the composition of the Chelyabinsk meteorite to the average composition of LL chondrites had shown their complete convergence. The concentrations of sidero- and chalcophile rare elements in the meteorite, normalized to CI chondrites, are much close to the values for LL chondrites and almost reproduce the character of their distribution in the spider diagram. However, some high-charged and lithophile elements (Nb, Zr, Hf, Sr, Ba, Th, and U) not belonging to the mentioned groups are characterized by somewhat increased contents. The enrichment of the samples of the Chelyabinsk meteorite in rare-earth elements compared to LL chondrite (5.18 against 3.58 ppm) is also revealed. This is related to the higher concentrations of light lanthanides in the meteorite samples, which is seen from the increased La/Yb ratio compared to the value for LL chondrite (1.9–2.3 and 1.4, respectively). Iron-nickel alloys are the main magnetism carriers in the Chelyabinsk meteorite. The compositions of kamacite, taenite, chromite, and Fe-sulfides are not much different. The optical and microprobe data are confirmed by the thermomagnetic parameters as well: (1) The specific magnetization of 4–6 Am2/kg points to small variations in the concentrations of magnetic minerals. (2) The M(T) curves for all the samples nearly repeat each other, and the Curie temperatures of 490–520 and 740–770°C are registered in the curves of the first and second heating, hence, these curves correspond to kamacite of various composition, right up to pure iron. (3) The monocline ferrimagnetic pyrrhotite of TC = 320–340°C is registered in the treated fragments in both the M(T) curves of heating and cooling. (4) The concentrations by thermomagnetic analysis amount to 0.6–1.6% (0.9% average) for kamacite, 0.7–1.5% (1.1% average) for taenite, and 0–1.5% (0.4% average) for monocline pyrrhotite. (5) No magnetite was found in the M(T) curve during the first heating of the samples. Hence, the content of magnetite is much below 0.1.  相似文献   

10.
Analyses of some samples of the Chelyabinsk meteorite suggest that the meteoritic material can contain a mixture of complex organic compounds.  相似文献   

11.
12.
Barium isotopic compositions of single 2.3-5.3 μm presolar SiC grains from the Murchison meteorite were measured by resonant ionization mass spectrometry. Mainstream SiC grains are enriched in s-process barium and show a spread in isotopic composition from solar to dominantly s-process. In the relatively coarse grain size fraction analyzed, there are large grain-to-grain variations of barium isotopic composition. Comparison of single grain data with models of nucleosynthesis in asymptotic giant branch (AGB) stars indicates that the grains most likely come from low mass carbon-rich AGB stars (1.5 to 3 solar masses) of about solar metallicity and with approximately solar initial proportions of r- and s-process isotopes. Measurements of single grains imply a wide variety of neutron-to-seed ratios, in agreement with previous measurements of strontium, zirconium and molybdenum isotopic compositions of single presolar SiC grains.  相似文献   

13.
14.
This paper reports data on the masses of fragments of the Chelyabinsk meteorite shower (fall of 15.02.2013). Assuming a lognormal distribution for the masses of fragments, the logarithm of the mean mass and standard deviation were estimated for the available data, describing the distribution density of masses and calculated diameters of fragments. Based on the dependence of the cumulative number of fragments with masses equal or greater than a given value, the mass of the largest fragment of the Chelyabinsk meteorite shower was estimated. It was shown that the most probable mass of such a fragment is hundreds of kilograms for a total mass of infalling material of 100 metric tons (t) and 1–2 t for a total mass of 1000 t, and the lower constraint for the maximum mass of the fragment is a few tens of kilograms.  相似文献   

15.
This paper presents the development and utilisation of an automated image processing algorithm for detection and analysis of grains. Using optical polarising microscopy, a set of colored images are collected from an area on a thin section. A filtering operation, using rotation of a morphological alternating sequence filter (based on a structuring element), is used to remove twinning features within individual grains. Filtering is followed by the watershed segmentation technique to determine grain boundaries. The method is used for the identification of calcite grains in marble and the subsequent analysis of morphological anisotropy.  相似文献   

16.
17.
A laser microprobe capable of analysing nitrogen and noble gases in individual grains with masses less than a milligram is described. It can be used in both continuous wave (CW) mode, useful for stepwise heating of an individual grain, as well as in pulsed mode, useful for ablating material from a small selected area of a sample, for gas extraction. We could achieve low blanks (in ccSTP units) for 4He(4.8 x 10{-12}),22Ne(1.0 x 10{-12}),36Ar(1.0 x10 -13),84Kr(2.9 x 10{-14}),132 Xe(2.6 x 10{-14}), and N (87 pg), using this system. Preliminary data for individual chondrules from the Dhajala meteorite show that noble gases and nitrogen from grains as small as 170 microgram can be analysed using the present laser microprobe setup. The amount of trapped neon in Dhajala chondrules is very small, and nitrogen in the chondrules is isotopically heavier as compared to the bulk meteorite.  相似文献   

18.
We report the results of SIMS isotopic analyses of carbon, nitrogen, oxygen, and silicon made on 849 small (approximately 1 micrometer) individual silicon carbide grains from the Murchison meteorite. The isotopic compositions of the major elements carbon and silicon of most grains (mainstream) are similar to those observed in larger grain studies suggesting an AGB star origin of these grains. In contrast, the trace element nitrogen shows a clear dependency on grain size. 14N/15N ratios increase with decreasing grain size, suggesting different stellar sources for grains of different size. Typically observed 14N/15N ratios in the small grains of this study are approximately 2700, clearly larger than the values expected from model calculations of AGB stars. In addition to the three dredge-up episodes characteristic for the evolution of AGB stars, extra-mixing of CNO-processed matter in low mass AGB stars appears to be a promising possibility in order to explain the high 14N/15N ratios of the small circumstellar SiC grains. A small fraction of grains shows a silicon isotopic signature not observed in larger circumstellar SiC grains from Murchison. Their stellar origin is still uncertain. The minor type A, B, Y, and X grains were found to be present at a level of a percent, which is similar to their abundance in the larger-grain SiC separates from Murchison. Oxygen isotopic compositions are normal within the experimental uncertainties of several 10%, indicating that oxygen of stellar origin is rare or even absent in the SiC grains. We conclude that most of the oxygen is a contaminant which was introduced into the SiC grains after their formation, e.g., during sample processing in the laboratory. We identified a nitride grain, most likely Si3N4 with little carbon, with highly anomalous isotopic compositions (12C/13C = 157 +/- 33, 14N/15N = 18 +/- 1, delta 29 Si = -43 +/- 56%, delta 30 Si = -271 +/- 50%). The isotopic patterns of carbon, nitrogen, and silicon resemble those of the rare SiC X grains suggesting that these two rare constituents of circumstellar matter formed in the same type of stellar source, namely, Type II supernovae.  相似文献   

19.
The paper describes the effects of the passage of the Chelyabinsk meteoroid (which exploded on 15 February 2013 over the Chelyabinsk Region), which were established from geophysical data from West Siberian stations. The trajectory and speed of the meteoric body from the start of the glow to the breakup were recorded by surveillance cameras and dashcams. Records from broadband seismic stations were used to determine the exact time of the explosion (03:20:34 UTC) from the arrival times of the surface wave produced by this event. The explosion energy was estimated from the surface-wave amplitudes at ~ 100 kilotons on the assumption that the wave originated from a point source similar to a high-altitude thermonuclear explosion. A database of records from seismic stations obtained during the meteoroid passage has been compiled.  相似文献   

20.
Isovaline is present in the Murchison meteorite as a racemic mixture (about equal concentrations of the R and S enantiomers). Since isovaline does not have a hydrogen atom on its asymmetric α-carbon atom, the racemic mixture could not have formed by commonly accepted mechanisms of racemization. Thus, isovaline in the meteorite most probably was synthesized as a racemic mixture and is not the result of the racemization of either the R or S enantiomer. Other chiral amino acids in the meteorite are present as racemic mixtures, and were probably synthesized in a similar manner by abiotic, extraterrestrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号