首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The hygroscopic growth of individual aerosol particles has been measured with a Tandem Differential Mobility Analyser. The hygroscopic growth spectra were analysed in terms of diameter change with increasing RH from 20% to 85%. The measurements were carried out during the GCE cloud experiment at Kleiner Feldberg, Taunus, Germany in October and November 1990.Two groups of particles with different hygroscopic growth were observed. The less-hygroscopic group had average growth factors of 1.11, 1.04 and 1.02 for particle diameters of 50, 150 and 300 nm, respectively. The more-hygroscopic group had average growth factors of 1.34, 1.34, and 1.37 for the same particle diameters. The average fraction of less-hygroscopic particles was about 50%. Estimates of the soluble fractions of the particles belonging to the two groups are reported.Hygroscopic growth spectra for total aerosol, interstitial aerosol and cloud drop residuals were measured. A comparison of these hygroscopic growths of individual aerosol particles provides clear evidence for the importance of hygroscopic growth in nucleation scavenging. The measured scavenged fraction of particles as a function of diameter can be explained by the hygroscopic growth spectra.  相似文献   

2.
Supercooled drizzle (freezing drizzle) was observed at Inuvik, N.W.T., Canada (68°22′N, 133°42′W) on December 20, 21 and 27, 1995. Meteorological conditions in which the supercooled drizzle could form under low temperatures (colder than −20°C) in the mid-winter season of the Canadian Arctic were examined from the sounding data and data measured by a passive microwave radiometer at ground level. The following results were obtained. (1) Supercooled drizzle fell to the ground with ice pellets and frozen drops on snow crystals. (2) The maximum size of supercooled drizzle particles increased as the depth of cloud layer saturated with respect to water increased. (3) Because a layer of air temperature higher than 0°C was not detected from the sounding data at Inuvik, melting of snow particles was impossible. It was concluded, therefore, that supercooled drizzle was formed by the condensation–coalescence process below freezing temperature.  相似文献   

3.
An apparent shear flow instability occurred in the stably stratified night-time boundary layer on 6 October 1999 over the Cooperative Atmosphere–Surface Exchange Study (CASES-99) site in southeast Kansas. This instability promoted a train of billows which appeared to be in different stages of evolution. Data were collected by sonic anemometers and a high-frequency thermocouple array distributed on a 60 m tower at the site, and a high resolution Doppler lidar (HRDL), situated close to the tower. Data from these instruments were used to analyze the characteristics of the instability and the billow event. The instability occurred in a layer characterized by a minimum Richardson number Ri0.13, and where an inflection in the background wind profile was also documented. The billows, which translated over the site for approximately 30 min, were approximately L320 m in length and, after billow evolution they were contained in a layer depth H30 m. Their maximum amplitude, determined by HRDL data, occurred at a height of 56 m. Billow overturns, responsible for mixing of heat and momentum, and high-frequency intermittent turbulence produce kurtosis values above the Gaussian value of 3, particularly in the lower part of the active layer.  相似文献   

4.
This paper is focused on the study of rainfall yield characteristics of electrical storms observed over the Northern Iberian Peninsula during 1992–1996. To this aim Principal Components Analysis (PCA) and Self-Organizing Maps (SOM) method have been used. The SOM method is a group of artificial neural networks based on the topological properties of the human brain. Results clearly suggest that there exist three different meteorological patterns that are linked to the characteristics of electrical events found in the study area. In winter, most of the electrical events are formed under oceanic advection (NW air fluxes). On these cases, mean rainfall yield estimates reach values of 700 104 m3 per cloud to ground lightning flash (CG flash). During summer most frequent electrical storms are associated to local instability shooting by surface heating with advection of humidity coming from the Iberian Peninsula. Under these meteorological situations, rain is scarcer if compared with oceanic events but lightning CG counts reach the maximum values found in the area (about 10 CG counts per 20 × 20 km2 and day) giving this way the smallest rainfall yield with a mean value of 15 104 m3 per CG flash. Iberian air fluxes associated with cold air in upper parts of the atmosphere represent the third meteorological pattern found. This pattern is most common in spring and autumn but is not unusual in the rest of the seasons. In those cases mean rainfall yield in the area is about 150 104 m3 per CG flash. In all electrical episodes K instability index is greater than 15 °C but in the most lightning producing events, this index reaches in the area values greater than 24 °C. PCA results pointed out that there exists a relationship between rain and CG counts expressed by the first principal component computed from standardized data. However, we must notice that no event is solely linked to this axis, since a seasonal influence which decreases lightning production when rain increases is always present. Results found are of great interest for short term forecasting of flashfloods in mountainous areas like the Spanish Basque Country region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号