首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Results of theoretical and experimental studies obtained for an electromagnetic logging probe of new design are presented. As in the case of an induction logging probe, the magnetic dipole of the new probe produces a harmonically varying electromagnetic field, and the parameter to be measured is the electric voltage in the short receiving MN line. The theoretical studies have shown that under certain conditions, the results of measurement with this probe depend on the electrical anisotropy coefficient and do not depend on the longitudinal and transverse electrical resistivities of the anisotropic medium. A technique for determining the electrical anisotropy coefficient was tested on experimental data obtained by physical modeling.  相似文献   

3.
Amidst new global initiatives to promote garment workers’ health and safety following a spate of deadly factory disasters across the Global South, this critical review calls for an expanded research agenda that looks beyond the workplace to examine the complex politics, spatialities, and temporalities of garment workers’ health and wellbeing. Drawing on ethnographic research on garment workers across South Asia, we argue against a narrow, technocratic, and depoliticised emphasis on physical infrastructures and building safety, and advocate instead a more holistic and politically-engaged research approach to the everyday health and wellbeing of workers. A conceptual focus on health and wellbeing offers a window onto workers’ employment experiences and reveals how routine work pressures, exhaustion and ill health are shaped by the dynamics of global supply chains, even well after workers have disengaged from these global circuits. Understanding how garment work affects workers’ wellbeing and their prospects for a fulfilling life requires research that moves beyond the workplace and covers the entire life course.  相似文献   

4.
Ecological security evaluation is an important way to identify the need for improvement in a watershed and to assess the degree of regional sustainable development. Using a driver–pressure–state–exposure–response model, a comprehensive system of ecological security indicators was developed, and it was demonstrated in a case study of the main ecological problems facing the Qinghai Lake Basin. Indicators of the status of the natural ecological environment, socioeconomic pressure, and the degree of environmental damage were chosen to develop the model, and comprehensively evaluated the basin’s ecological security in 2000, 2004, 2009, and 2013 to reveal changes in the ecological security in response to changing climate and land use. The overall ecological security of the basin improved from 2000 to 2013, with considerable restoration and reconstruction of the ecosystem. From 2000 to 2004, environmental deterioration increased slightly as a result of pollution caused by human activities, excess land reclamation for agriculture, land desertification, and grassland degeneration. However, the obvious effect of ecological protection policies, such as conversion of farmland into grassland and stall feeding of livestock instead of grazing, led to improvement of the ecological environment from 2004 to 2013. Ecological security in the basin increased with increasing precipitation during the study period.  相似文献   

5.
It is important to have qualitative as well as quantitative understanding of the hydraulic exchange between lake and groundwater for effective water resource management. Dal, a famous urban fresh water lake, plays a fundamental role in social, cultural and economic dynamics of the Kashmir Valley. In this paper geochemical, isotopic and hydrological mass balance approaches are used to constrain the lake water–groundwater interaction of Dal Lake and to identify the sources of lake water. Water samples of precipitation (n = 27), lake water (n = 18) and groundwater (n = 32) were collected across the lake and its catchment for the analysis of δ18O and δ2H. A total of 444 lake water samples and 440 groundwater samples (springs, tube wells and dug wells) were collected for the analysis of Ca2+, Mg2+, HCO3 ?, SO4 2?, Cl?, NO3 ?, Na+ and K+. Water table and lake water level were monitored at 40 observation locations in the catchment. Water table map including pH and EC values corroborate and verify the gaining nature of the Dal Lake. Stable isotopes of lake water in Boddal and Gagribal basins showed more deviation from the global meteoric water line than Hazratbal and Nigeen basins, indicating the evaporation of lake water. The isotopic and geochemical mass balance suggested that groundwater contributes a significant proportion (23–40%) to Dal Lake. The estimated average groundwater contribution to Dal Lake ranged from 31.2 × 103 to 674 × 103 m3 day?1 with an average of 276 × 103 m3 day?1. The study will be useful to delineate the possible sources of nutrients and pollutants entering the lake and for the management of lake water resources for sustainable development.  相似文献   

6.
《Applied Geochemistry》2004,19(5):665-673
Here, a new technique for the determination of dissolved He isotope ratios in ground-waters is presented. This method is based on the extraction and subsequent equilibrium of dissolved gases in an added “host” gas phase. Ultra pure N2 is placed in glass flasks (250 cc), containing water samples, that were hermetically sealed after their collection. After shaking in an ultrasonic bath for 10 min, an aliquot of the separated gas phase was removed from the flask for MS analysis. 3He/4He ratios are measured by using a modified double collector mass spectrometer (VG 5400-TFT). Helium and Ne concentrations are calculated by comparing the partial pressures of masses 4 and 20 of the samples with those of the air-standard measured by a quadrupole mass spectrometer (QMS;VG Quartz). Using He and Ne equilibrium partitioning coefficients, it is possible to calculate the amount of gas originally dissolved in the water. The technique was tested on both air-saturated waters (ASW) and thermal waters from Stromboli (Aeolian Islands, South Italy), the results of which confirmed good reproducibility (≌5%) and accuracy (≌3%) of the data. The method was then applied to three thermal water samples collected from the same volcanic area and the results compared with those of a fumarolic and a soil gas. The isotope ratios for dissolved He gave values of 4.06–4.23 Ra, which are significantly higher than those previously reported in the literature (3.0, 3.5 and 2.9 Ra) and that measured at the fumarole (3.09 Ra), suggesting a newer and higher isotopic signature for the volcanic system. The proposed method appears to be a useful tool in the determination of 3He/4He ratios in ground-water systems, especially when free gases are not available or are dangerous to collect.  相似文献   

7.
The pervious lateral bars (parafluvial zone) and beds (hyporheic zone), where stream water and groundwater exchange, are dynamic sites of hydrological and biological retention. The significance of these biogeochemical ‘hotspots’ to stream and groundwater metabolism is largely controlled by filtration capacity, defined as the extent to which subsurface flowpaths and matrix hydraulic conductivity modify water characteristics. Where hydraulic conductivity is high, gradients in biogeochemistry and microbial activity along subsurface flowpaths were hypothesized to be less marked than where hydraulic conductivity is low. This hypothesis was tested in two riffles and gravel bars in an Australian subtropical stream. At one site, gradients in chemical and microbial variables along flowpaths were associated with reduced hydraulic conductivity, longer water residence time and reduced filtration capacity compared with the second site where filtration capacity was greater and longitudinal biogeochemical trends were dampened. These results imply that factors affecting the sediment matrix in this subtropical stream can alter filtration capacity, interstitial microbial activity and biogeochemical gradients along subsurface flowpaths. This hydroecological approach also indicates potential for a simple field technique to estimate filtration capacity and predict the prevailing hyporheic gradients in microbial activity and biogeochemical processing efficiency, with significant implications for stream ecosystem function.  相似文献   

8.
The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards’ and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards’ model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published, data from a laboratory experiment are studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability, only the two-phase flow approach provides reasonable results.  相似文献   

9.

Water scarcity is a critical issue worldwide, and Chile is no exception. Since 2010, Central Chile has been enduring an ongoing water crisis due to the coupled effects of a severe drought and the overuse of water resources, especially groundwater. Rural communities have been strongly impacted, mainly because wells from which drinking water is supplied show a dramatic drop in water levels, and some have even dried up. The water scarcity scenario requires the integration of actors and disciplines to increase awareness of groundwater; however, how to make this valuable element visible in society is an issue that remains open to debate. This paper describes and reflects on the process of making educational material about groundwater and water scarcity for children to promote public awareness. Based on transdisciplinary and co-designing processes, this work describes the social perceptions of groundwater among children and community leaders, as well as how scientific information and local knowledge of water scarcity could be integrated into a book for the young population. This research finds that educational projects on groundwater resources increase people’s awareness of the role of this hidden resource in the water cycle. Such projects encourage the creation of grounded and contextualised materials that incorporate the knowledge and experience already present in the communities, increasing public awareness of the role of groundwater and associated water scarcity issues, thereby integrating academia and society. This approach could be a tool to lay the foundations for successfully addressing the water crisis in Chile over generations.

  相似文献   

10.
This article examines changing water governance modalities in the context of the neoliberalization of nature. Specifically, it focuses on Brazilian water sector reforms passed in 1997 that mandate decentralized and participatory decision-making at the river basin scale. Critics have suggested that rescaling, decentralization, and participatory governance mechanisms – supposedly intended to render decision-making more equitable, accessible, and relevant – can serve to legitimate, facilitate, and thus further embed processes of neoliberalization. Examining the impact of Brazil’s water sector reforms on the state–society relationship, this article presents a case study of water governance in the São Francisco River Basin and finds that the reforms – despite their neoliberalizing potential – have not significantly contributed to the neoliberalization of governance therein. Instead, water governance continues to be characterized by longstanding patterns of traditional elite control. Through an institutional and socio-natural analysis, this article describes and accounts for the continued dominance of these patterns relative to neoliberalization and explores activists’ efforts to use water sector reforms to pursue more progressive possibilities. The article concludes with a discussion of the implications for variegation and contestation in ongoing debates over neoliberal natures.  相似文献   

11.
《Applied Geochemistry》2006,21(5):849-857
The determination of reduced S species in natural waters is particularly difficult due to their high instability and chemical and physical interferences in the current analytical methods. In this paper a new, rapid and reliable analytical procedure is presented, named the Cd–IC method, for their determination as ΣS2− via oxidation to SO42- after chemical trapping with an ammonia–cadmium solution that allows precipitation of all the reduced S species as CdS. The S2−–SO4 is analysed by ion-chromatography. The main advantages of this method are: low cost, high stability of CdS precipitate, absence of interferences, low detection limit (0.01 mg/L as SO4 for 10 mL of water) and low analytical error (about 5%). The proposed method has been applied to more than 100 water samples from different natural systems (water discharges and cold wells from volcanic and geothermal areas, crater lakes) in central-southern Italy.  相似文献   

12.
Darcy’s law is the equation of reference widely used to model aquifer flows. However, its use to model karstic aquifers functioning with large pores is problematic. The physics occurring within the karstic conduits requires the use of a more representative macroscopic equation. A hydrodynamic model is presented which is adapted to the karstic aquifer of the Val d’Orléans (France) using two flow equations: (1) Darcy’s law, used to describe water flow within the massive limestone, and (2) the Brinkman equation, used to model water flow within the conduits. The flow equations coupled with the transport equation allow the prediction of the karst transfer properties. The model was tested by using six dye tracer tests and compared to a model that uses Darcy’s law to describe the flow in karstic conduits. The simulations show that the conduit permeability ranges from 5?×?10?6 to 5.5?×?10?5?m2 and the limestone permeability ranges from 8?×?10?11 to 6?×?10?10?m2. The dispersivity coefficient ranges from 23 to 53 m in the conduits and from 1 to 5 m in the limestone. The results of the simulations carried out using Darcy’s law in the conduits show that the dispersion towards the fractures is underestimated.  相似文献   

13.
On April 1, 2017, China announced to initiate the Xiong’an New Area (XNA) plan, which is a national-level strategy aimed at alleviating the pressures felt by Beijing and promoting the integration of the Beijing-Tianjin-Hebei (BTH) city-region. In China, a city-region can be viewed as an outcome of state spatial selectivity that aims to manage crises and maintain governance through strong state involvement. This paper attempts to provide a broad view of the XNA plan by examining it in the context of China’s long-term efforts to coordinate the BTH region, explaining the incentives associated with choosing Xiong’an, and analyzing the challenges the plan has faced. Considering that theoretical insights based on Western experience may not be applicable to China, this paper can contribute to the debate revealing the logics of city-region building in different contexts.  相似文献   

14.
This paper focuses on the mechanisms taking place in a granular platform supported by piles in soft soil. Several modelling approaches were explored. A two-dimensional small scale model test using the Taylor–Schneebeli soil analogue was first developed and the experimental results were compared to a discrete element model using the particle code PFC. The validation of this numerical approach allowed the parametric study to be extended numerically. Parametric studies were also performed on continuum model using the finite-difference code FLAC. Comparison of the parametric studies performed on each modelling approach underlined some differences and lead to a consideration on the macro- and micromechanical parameters.  相似文献   

15.
16.
Geomagnetic (magnetic susceptibility), geoelectrical (resistivity and conductivity, self-potential/SP, induced polarization/IP), and radiometric measurements (gamma radiation of K, U, and Th) are well adapted to the needs and wants of geoscientists and exploration geologists, in particular, who widely use them in wireline tools and for ground surveys. Miniaturization of technical components resulted in the production of handheld devices which enable field geologists to an improving of the mineralogical and chemical database and the efficiency of the routine work in the field or at a drill site. The tools and devices used by a field geologist are categorized and presented in a tripartite set. The tools for routine field work with “hammer and laptop” belong to the A-level kit. The handheld devices under consideration constitute an intermediate level (B-level) to enhance the mineralogical and chemical database using physical methods. More advanced level applications make use of short-wave infra-red mineral analyzers or portable X-ray fluorescence devices (C-level). Handheld tools are designed for one-dimensional (cross-sectioning) and two-dimensional (mapping) surveys as well as drill core and cuttings examinations during terrain analysis. They can be operated in foot-borne surveys by one field geologist and the obtained data interpreted without an exuberant computing capacity. In the present overview, siliciclastic rocks and residual deposits have been singled out for their good response to the afore-mentioned methods. Their practical use is demonstrated by means of some case histories, each standing for a particular sedimentary lithology and discussed in combination with similar applications from literature: mixed-type (calcareous) siliciclastic rocks from Mesozoic–Cenozoic basins, SE Germany; residual argillaceous/kaolin deposits on top of granites of the Variscan basement, SE Germany; Neogene red-bed sediments from the promontory of the Tien Shan, East Uzbekistan; and Cretaceous gray-bed sediments with coal seams from the Baganuur basin, Central Mongolia. Cobweb diagrams, histograms, ternary diagrams, simple x-y plots and x-y plots in combination with spider diagrams have proved to be the most suitable ways when it comes to combine the data obtained from various methods and to illustrate these results for further interpretation on screen. The geophysical methods are discussed as to their strong and weak points to cater for a solution in three important subject matters of applied and genetic sedimentology: (1) constraining the redox regime, (2) determination of the lithology and mineralogy, (3) and provenance analysis and lithostratigraphy. Magnetic methods have proved to be useful for all objectives (1, 2, and 3), gamma spectrometry can successfully be applied for objectives 1 and 2, and micro-resistivity contributes significantly to solutions of objective 2. Magnetic and gamma spectrometric methods do not need any direct contact with the sedimentary rocks and therefore can be correlated with equivalent airborne surveys and are less depending on the wetability of the substrate and climate than the geoelectrical methods under study. The final goal of this review is to create a matrix of applicability of the methods and enable the field geologist to select the most suitable type of geophysical measurement or combination of tools for a solution to one of the three issues as a function of the sediment types under study.  相似文献   

17.
Water was sampled from over 100 sources in Nepal’s Kathmandu Valley, including municipal taps, dug wells, shallow-aquifer tube wells, deep-aquifer tube wells, and dhunge dharas (or stone spouts, public water sources that capture groundwater or surface water). Information was gathered on user preference and site and well characteristics, and water was examined for indicators of contamination from sewage, agriculture, or industry. Most problematic were total coliform and Escherichia coli bacteria, which were present in 94 and 72% of all the water samples, respectively. Contamination by nitrate, ammonia and heavy metals was more limited; nitrate and ammonia exceeded Nepali guidelines in 11 and 45% of the samples, respectively. Arsenic and mercury exceeded WHO guidelines in 7 and 10% of the samples, respectively, but arsenic never exceeded the less strict Nepali guideline. Significant differences existed in contamination levels between types of sources; dug wells and dhunge dharas, being the shallowest, were the most contaminated by bacteria and nitrate; deep-aquifer tube wells were the most contaminated by arsenic. Whereas E. coli concentrations decreased with depth, iron and ammonia concentrations increased with depth. These relationships account for people choosing to drink water with higher levels of bacterial contamination based on its superior (non-metallic) taste and appearance.  相似文献   

18.
The phase assemblages and compositions in a K-free lherzolite + H2O system were determined between 4 and 6 GPa and 700–800°C, and the dehydration reactions occurring at subarc depth in subduction zones were constrained. Experiments were performed on a rocking multi-anvil apparatus using a diamond-trap setting. The composition of the fluid phase was measured using the recently developed cryogenic LA–ICP–MS technique. Results show that, at 4 GPa, the aqueous fluid coexisting with residual lherzolite (~85 wt% H2O) doubles its solute load when chlorite transforms to the 10-Å phase between 700 and 750°C. The 10-Å phase breaks down at 4 and 5 GPa between 750 and 800°C and at 6 GPa between 700 and 750°C, leaving a dry lherzolite coexisting with a fluid phase containing 58–67 wt% H2O, again doubling the total dissolved solute load. The fluid fraction in the system increases from 0.2 when a hydrous mineral is present to 0.4 when coexisting with a dry lherzolite. Our data do not reveal the presence of a hydrous peridotite solidus below 800°C. The directly measured fluid compositions demonstrate a fundamental change in the (MgO + FeO) to SiO2 mass ratio of fluid solutes occurring at a depth of ca. 120–150 km (in the temperature window of 700–800°C), from (MgO–FeO)-dominated at 4 GPa [with (MgO + FeO)/SiO2 ratio of 1.41–1.56] to SiO2-dominated at 5–6 GPa (ratios of 0.61–0.82). The mobility of Al2O3 increases by more than one order of magnitude across this P–T interval and demonstrates that Al2O3 is compatible in an aqueous fluid coexisting with the anhydrous ol-opx-cpx ± grt assemblage. This shift in the fluid composition correlates with changes in the phase assemblage of the residual silicates. The hitherto unknown fundamental change in (MgO + FeO)/SiO2 ratio and prominent increase in Al2O3 of the aqueous fluid with progressive subduction will likely inspire novel concepts on mantle wedge metasomatism by slab fluids.  相似文献   

19.
In this paper a thermogravimetry-differential thermal analysis method coupled with chromatography (TG-DTA-GC) has been adopted to simulate the generation of gaseous hydrocarbons from different hydrocarbon source rocks such as coals, mudstones, and carbonate rocks with different maturities. The temperature programming for thermal simulation experiment is 20℃/min from ambient temperature to 700℃. As viewed from the quantities and composition of generated gaseous hydrocarbons at different temperatures, it is shown that low-mature coal has experienced the strongest exothermic reaction and the highest loss of weight in which the first exothermic peak is relatively low. Low-mature coal samples have stronger capability of generating gaseous hydrocarbons than high-mature samples. The amounts and composition of gaseous hydrocarbons generated are closely related not only to the abundance of organic carbon in source rocks, but also to the type of kerogen in the source rocks, and their thermal maturity. In the present highly mature and over-mature rock samples organic carbon, probably, has already been exhausted, so the production of gaseous hydrocarbons in large amounts is impossible. The contents of heavy components in gaseous hydrocarbons from the source rocks containing type- Ⅰ and - Ⅱ kerogens are generally high ; those of light components such as methane and ethane in gaseous hydrocarbons from the source rocks with Ⅲ-type kerogens are high as well. In the course of thermal simulation of carbonate rock samples, large amounts of gaseous hydrocarbons were produced in a high temperature range.  相似文献   

20.
The characteristics of δD and δ18O in precipitation, groundwater and surface water have been used to understand the groundwater flow system in the Ordos Plateau, north-central China. The slope of the local meteoric water line (LMWL) is smaller than that of the global meteoric water line (GMWL), which signifies secondary evaporation during rainfall. The distribution of stable isotopes of precipitation is influenced by temperature and the amount of precipitation. The lake water is enriched isotopically due to evaporation and its isotopic composition is closely related to the source of recharge and location in the groundwater flow systems. River water is enriched isotopically, indicating that it suffers evaporation. The deep groundwater (more than 150?m) is depleted in heavy isotopes relative to the shallow groundwater (less than 150?m), suggesting that deep groundwater may have been recharged during the late Pleistocene and early Holocene, when the climate was wetter and colder than at present. All groundwater samples plot around the LMWL, implying groundwater is of meteoric origin. Shallow groundwater has undergone evaporation and the average evaporation loss is 53%. There are two recharge mechanisms: preferential flow, and the mixture of evaporated soil moisture and subsequent rain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号