首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term study of coherent structures in the atmospheric surface layer   总被引:1,自引:2,他引:1  
A long-term study of coherent turbulence structures in the atmospheric surface layer has been carried out using 10 months of turbulence data taken on a 30-m tower under varying meteorological conditions. We use an objective detection technique based on wavelet transforms. The applied technique permits the isolation of the coherent structures from small-scale background fluctuations which is necessary for the development of dynamical models describing the evolution and properties of these phenomena. It was observed that coherent structures occupied 36% of the total time with mean turbulent flux contributions of 44% for momentum and 48% for heat. The calculation of a transport efficiency parameter indicates that coherent structures transport heat more efficiently than momentum. Furthermore, the transport efficiency increases with increasing contribution of the structures to the overall transport.  相似文献   

2.
Multi-level turbulent wind data from the Risø Air-Sea Experiments (RASEX) were used to examine the structure of large-scale motions in the marine atmospheric surface layer. The quadrant technique was used to identify flux events (ejections/sweeps). Ejections, which appear to occur in groups, are seen to occur first at the upper level, moving successively to lower levels with small time delays. A strong correlation between events at different heights suggests that they may all be part of a single large structure. Cross-correlation between velocity signals was used to estimate orientation of the structure using Taylor's hypothesis. The inclination of this structure is shallow ( 15°) near the surface and increases with height. Spatial representations of the fluctuating wind vectors show a structure that is strikingly similar to conceptual models of transverse vortices and shear layers seen in laboratory flows and direct numerical simulation (DNS) of low Reynolds number flows. Spatial visualization of velocity fluctuations during other time periods and conditions clearly shows the existence of shear layers, transverse vortices, plumes, and downdrafts of various sizes and strengths. A quantitative analysis shows an increase in the frequency of shear related events with increasing wind speed.  相似文献   

3.
Observations of water vapour fluctuations over arice field show vapour ramps. Coherent structuresare first revealed by the frequently occurring ramp pattern in the vapourtrace. Wavelet and pseudo-wavelet analysis techniques were used inconditional sampling, and more than 100 hr of data have been analyzedto determine coherent structure characteristics. The most probablecoherent structure duration was in the range 2–12 sec andthe duration range of the most effective coherent structures shows somedifference between heat and water vapour transfers. Coherent structurescontribute to the major part of the total flux.  相似文献   

4.
Predictions from a new theory for high Reynolds number turbulent boundary layers during near-neutral conditions are shown to agree well with measurements of atmospheric surface-layer variances and spectra. The theory suggests surface-layer turbulence is determined by detached eddies that largely originate in the shearing motion immediately above the surface layer; as they descend into this layer, they are strongly distorted by the local shear and impinge onto the surface. Because the origin of these eddies is non-local, they are similar to those described in previous studies as `inactive' turbulence. However, they are, in fact, dynamically highly active, supplying the major mechanism for the momentum transport, including upward bursting on the time scale of the larger eddies. The vertical velocity results show that the variance and the low frequency parts of spectra increase with height in the surface layer, while in the self similar (k1 -1) range the streamwise low frequency components are approximately constant with height. These large-scale longitudinal eddies extend to a length s, which is equal to the boundary-layer height near the surface andincreases linearly to a maximum of about three times the boundary-layer height at roughly 15 m and decreases in the upper parts of the surface layer. This lower part of the surface layer, the eddy surface layer, is the region in which the eddies impinging from layers above are strongly distorted. This new result for the atmospheric boundary layer has practical application for calculating fluctuating wind loads on structures and lateral dispersion of pollution from local sources.  相似文献   

5.
Land-use practices such as deforestation or agricultural management may affect regional climate, ecosystems and water resources. The present study investigates the impact of surface heterogeneity on the behaviour of the atmospheric boundary layer (ABL), at a typical spatial scale of 1 km. Large-eddy simulations, using an interactive soil–vegetation–atmosphere surface scheme, are performed to document the structure of the three-dimensional flow, as driven by buoyancy forces, over patchy terrain with different surface characteristics (roughness, soil moisture, temperature) on each individual patch. The patchy terrain consists of striped and chessboard patterns. The results show that the ABL strongly responds to the spatial configuration of surface heterogeneities. The stripe configuration made of two patches with different soil moisture contents generates the development of a quasi- two-dimensional inland breeze, whereas a three-dimensional divergent flow is induced by chessboard patterns. The feedback of such small-scale atmospheric circulations on the surface fluxes appears to be highly non-linear. The surface sensible and latent heat fluxes averaged over the 25-km2 domain may vary by 5% with respect to the patch arrangement.  相似文献   

6.
两次台风过程近地层湍流度和阵风因子分析   总被引:4,自引:0,他引:4  
利用2005年台风"麦莎"和"卡努"期间青岛海岸实测三维风观测资料,挑选6个10 min平均风速≥8 m/s的强风时段,使用矢量分析方法研究台风影响华东地区时近地层的平均风速风向变化、湍流度和阵风因子变化等湍流特性,结果表明台风影响期间,近地层湍流脉动风速不稳定,水平方向、垂直方向风速风向快速变化;虽然台风"麦莎"、"卡努"入海地点不同,不同强风时段近地层湍流度差异也较大,但湍流强度都表现为Iu(横向)>Iv(纵向)>Iw(垂直向).两次台风影响过程不同强风时段近地层阵风因子的变化与湍流度的变化是一致的,在风速增大风向转变的时段,湍流度和阵风因子明显增大.  相似文献   

7.
In two preceding papers, coherent structures of theatmospheric boundary layer (ABL), such as rollvortices or cells, were investigated through radar andaircraft observations collected during the TRAC-93(Turbulence Radar Aircraft Cells) experiment held inFrance in June 1993. The analysis of this experimentaldata set provided information on the spatialcharacteristics of these organisations (length scale,orientation, type ... ), their temporal and verticalevolution, and their relation with the dynamic andthermodynamic conditions of the ABL. For the thirdpaper in this series, a large eddy simulation model is used to examine the impact of thecoherent structures on the ABL vertical fluxes. Theanalysis of the simulated horizontal fields is madewith two-dimensional auto and cross-correlationsapplied on different pertinent ABL variables. Theresults emphasise a directional anisotropy of theseorganised fields throughout the ABL, much morepronounced in the heat flux fields, not only at thelength scale of organisations but also at theturbulence scales. This finding has an importantconsequence for traditional ABL flux measurementsbased on the hypothesis of isotropic and homogeneousturbulence. It can explain part of the underestimationof the surface fluxes often mentioned in theliterature. This approach makes it possible tomodify the concept of diffusion time (in chemicalmodelling) and could also lead to revised ABLparameterisations in Range Scale models.  相似文献   

8.
Characterization of Coherent structures in the Atmospheric Surface Layer   总被引:3,自引:2,他引:3  
The ramplike coherent structures, observed in the temporal series of temperature and humidity in the atmospheric surface layer, are analyzed using the intermittency function and the wavelet transforms, with Haar, D4 and Mexican Hat functions as mother wavelets, in order to find the most efficient conditional sampling technique. It was found that the intermittency function and the wavelet transform, using Mexican Hat as mother wavelet, are the only ones that sample structures that fulfill the ramplike coherent structures definition of a slow rise followed by a sudden drop in the temporal series. The conditionally averaged structures detected by both techniques were similar for temperature, humidity, and vertical velocity at heights of 3, 5, and 9.4 m. Significant discrepancies were found among the conditional averaged structures detected by both techniques for zonal and meridional components of the wind at 11.5 m. Considering both techniques, it was observed that the averagedcoherent-structure duration ranged from 23.7 ± 0.5 s to 37.8 ± 3.0 s. Furthermore, the averaged number of events per 20-minute period ranged from 20.0 ± 1.0 to 28.5 ± 1.1, and the averaged intermittency factor from 45.0 ± 0.4% to 59.1 ± 1.3%. It was also observed that the averaged duration of the ramplike coherent structures increases with height, while their intensity, number, and intermittency factor decrease. Despite the good matching obtained for temperature and humidity, the coherent-structure properties did not show the expected variation with wind speed, stability parameter, and friction velocity. The Kolmogorov–Smirnov test indicated that the intermittent function and the wavelet transform did not detect coherent structures belonging to the same population.  相似文献   

9.
大气边界层阵风相干结构的产生条件   总被引:1,自引:0,他引:1  
壁湍流相干结构的发现是近代湍流研究的重大进展之一,从20世纪50年代开始,在大气边界层湍流中也发现了相干结构——对流云街,并进行了系统的研究。近些年来,人们发现在近地层湍流中也存在相干结构。利用北京325 m气象塔对城市下垫面中大风和小风天气的风速分析,发现较有规律的周期3~6 min的阵风,且有明显的相干结构,而对不同下垫面的阵风研究,均发现存在这种相干结构,这种阵风相干结构对通量输送有不可忽视的作用。本文利用2012年4月甘肃省民勤县巴丹吉林沙漠观测塔的超声风速和平均场风速、温度观测资料,对阵风相干结构的产生条件进行了分析。采用傅立叶变换,将三维超声风速按频率分成基流(周期10分钟以上)、阵风扰动(周期1到10分钟)、湍流脉动(周期小于1分钟)三部分,结合平均场的资料分析发现:阵风相干结构出现在静力中性、不稳定甚至略微稳定的条件下,或者说机械作用主导的大气边界层,阵风区就会出现相干结构,热力作用对其有抑制和干扰的作用。从而,阵风的相干结构和壁面相干结构都出现在中性条件下,是机械湍流的现象,都主导着动量能量的输运。阵风区的相干结构并不等同于对流云街,他们出现在不同的大气稳定度条件下且尺度不同。  相似文献   

10.
强风天气下边界层结构特征   总被引:2,自引:0,他引:2  
近地层观测的强风运动表明,叠加在平均流动之上的脉动通常有两种,一种是随机的湍流脉动,还有一种具有相干结构的阵风扰动。分析表明,上层强风的剪切运动产生阵风,并向下传递能量,对近地层的通量传输起到重要作用。本文利用北京325 m气象塔、位于海拔1257 m的妙峰山测风塔和位于海拔1688 m的灵山测风塔的资料,分析了强风天气下,边界层上层出现阵风并向下传递的过程,进一步证实无论在近地层还是边界层上层,强风期间,叠加在平均流动上除了高频湍流脉动之外,还有周期为1~10分钟的阵风,即相干结构。阵风峰期有下沉运动,阵风谷期有上升运动。这些相干结构在边界层上层产生,向下运动和传播过程中受到平均气流梯度的切变作用和地面摩擦,破碎为湍流结构。边界层上层的阵风和湍流产生的动量通量向下传递,使得强风期间,边界层中阵风和湍流对通量具有同样的输送能力,对边界层中沙尘、污染物等气溶胶的传输具有重要作用。本研究为模式中进行通量输送参数化方案的修正提供了观测和理论依据。  相似文献   

11.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

12.
A recursive filter adopted for online eddy covariance analysis of turbulence data inthe atmospheric surface layer is revisited, and its properties and performanceare evaluated by means of concepts and methods developed in digital signal analysis.A rigorous estimate of effective cut-off frequency is derived along with an estimateof filter induced phase lag. Accordingly, filter design criteria are revised and variouseffects of parameter choice are assessed. Furthermore suitable corrections for compensating filter induced distortion, i.e., phase lag and attenuation, are proposed. The modified filter is tested on: (a) An artificial time series (random noise superimposed to `slow' sinusoidal signal); (b) turbulence data from field measurements. In case (a) the retrieval of input signal parameters is appreciably improved. In case (b) a better agreement with a Gaussian moving average is obtained, at lower computational cost.  相似文献   

13.
Surface and remote-sensing instruments deployed during ESCOMPTE experiment over the Marseille area, along the Mediterranean coast, were used to investigate the fine structure of the atmospheric boundary layer (ABL) during sea-breeze circulation in relation to pollutant transport and diffusion. Six sea-breeze events are analyzed with a particular focus on 25 June 2001.Advection of cool and humid marine air over land has a profound influence on the daytime ABL characteristics. This impact decreases rapidly with the inland distance from the sea. Nearby the coast (3 km inland), the mixing height Zi rises up to 750 m and falls down after 15:00 (UT) when the breeze flow reaches its maximum intensity. A more classical evolution of the ABL is observed at only 11-km inland where Zi culminates in the morning and stabilizes in the afternoon at about 1000 m height.Fine inspection of the data revealed an oscillation of the sea-breeze with a period about 2 h 47 min. This feature, clearly discernable for 3 days at least, is present in several atmospheric variables such as wind, temperature, not only at the ground but also aloft in the ABL as observed by sodar/RASS and UHF wind profilers. In particular, the mixing height Zi deduced from UHF profilers observations is affected also by the same periodicity. This pulsated sea-breeze is observed principally above Marseille and, at the northern and eastern shores of the Berre pond.In summary, the periodic intrusion over land of cool marine air modifies the structure of the ABL in the vicinity of the coast from the point of view of stability, turbulent motions and pollutants concentration. An explanation of the source of this pulsated sea-breeze is suggested.  相似文献   

14.
The aerodynamic drag coefficient (CD) is conjectured to change (or remains almost uniform) with the horizontal wind speed (U) over a flexible (or fixed) surface element, which is represented with the surface roughness (z0). This conjecture is tested for the near neutral atmospheric turbulence (i.e. when surface stability z/L is almost equal to 0, where z is the measurement height and L is Obukhov length) of monsoon and winter season at an on-slope and a ridge-top site in the Indian Himalaya, wherein the ridge-top site is associated with a higher degree of sensitivity to the roughness element and terrain attributes. This hypothesis is successfully verified for two conditions, (i) the monsoon period observations of ridge-top site are found to have higher z0 due to vegetative growth than the winter period for flows having similar terrain signature, and (ii) the monsoon and winter period observations of on-slope site are noted to have similar z0 for flows having signature of steep terrain. Subsequently, constants (i.e. a and b) of the power-law relationships between CD and U (i.e. CD = aUb), as a function of z0, are optimized. It is noted that the relationship between CD and U has higher sensitivity towards the terrain slope than the vegetative growth.  相似文献   

15.
The TRAC98 experimental campaign (Turbulence Radar Aircraft Cells) devoted to coherent structures analysis took place over the Beauce plain (France) during summer 1998. It allowed us to collect a large dataset of airborne measurements in addition to various ground measurements. This study aims at diagnosing the occurrence of coherent structures within the atmospheric boundary layer (ABL) through airborne measurements. The statistical analysis performed as a first step from turbulent parameters underlined the homogeneity of the ABL over the Beauce plain. However mixed-layer scaling failed at the top of the ABL, even when taking into account the entrainment rate. Coherent structures were detected through the analysis of ABL isotropy, using the opportunity of sampling with two perpendicular crossing planes, one of them being aligned with the wind. This approach allowed us to determine an organization scheme of the ABL for three of the five flights (ARAT30, MIV30 and MIV27). For the ARAT30 flight, the analysis was pursued by focusing on measurements of fluctuations in the inner flight legs. In this way, the low-level cloud cover has been investigated from the downward visible radiation (VISD). The results indicated an anisotropy of the horizontal cloud size. Secondly, the variations of some parameters were analysed through lagged correlation functions. This allowed us to infer relationships between the vertical velocity, VISD, mixing ratio and lifting condensation level. Length scales have also been extracted, and confirmed the ABL organization during the ARAT30 flight. Finally, the anisotropy observed in various flights has been investigated with respect to the underestimation of the latent heat fluxes revealed by the imbalance of the surface energy budget.  相似文献   

16.
An analogy has been established between a plane mixing layer and the atmospheric flow near the top of a vegetation canopy. It is based on a common feature, a strong inflection in the mean velocity profile, responsible for hydrodynamical instabilities that set the pattern for the coherent eddies and determine the turbulence length scales. In an earlier study, this analogy was tested using a small data set from thirteen experiments, all in near-neutral conditions. It provided a good prediction of the streamwise spacing w of the dominant canopy eddies (evaluated from time series of vertical velocity) that appears to depend on a shear length scale Ls = U(h)/U'(h), where h is canopy height, U is mean velocity and U' the vertical gradient dU/dz. The present analysis utilizes an extensive data set of approximately 700 thirty-minute runs, from six experiments on two forest sites and a maize crop, with a large range of stability conditions. w was estimated for each run using the wavelet transform as an objective, automated detection method. First, the variations of w and Ls with atmospheric stability are discussed. Neutral and unstable values exhibit a large scatter whereas in stable conditions both variables decrease with increasing stability. It is subsequently found that w is directly related to Ls, in a way close to the neutral prediction w /h = 8.1Ls/h.The Strouhal number Str = Ls /w is then shown to vary with atmospheric stability, weakly in unstable conditions, more significantly in stable conditions. Altogether these results suggest that, to some extent, the plane mixing-layer analogy can be extended to non-neutral conditions. It is argued that the primary effect of atmospheric stability, at least in stable conditions, is to modify the shear length scale Ls through changes in U(h) and U'(h), which in turn determines the streamwise spacing of the active, coherent motions.  相似文献   

17.
Turbulence measurements from a 30 m tower in the stably stratifiedboundary layer over the Greenland ice sheet are analyzed. The observationsinclude profile and eddy-correlation measurements at various levels. Atfirst, the analysis of the turbulence data from the lowest level (2 m aboveground) shows that the linear form of the non-dimensional wind profile(m) is in good agreement with the observations for z/L <0.4, whereL represents the Obukhov length. A linear regression yieldsm=1+5.8z/L. The non-dimensional temperature profile (h) at the2m level shows no tendency to increase with increasing stability. The datafrom the upper levels of the tower are analyzed in terms of both localscaling and surface-layer scaling. The m and the h values show atendency to level off at large stability (z/>0.4) where represents the local Obukhov length. Hence, the linear form of the functions is no longer appropriate under such conditions. The bestcorrespondence to the data can be achieved when using the expression ofBeljaars and Holtslag for m and h. The vertical profiles of theturbulent fluxes, the wind velocity variances and temperature variance arealso determined. The momentum flux profile and the profiles of wind speedvariances are in general agreement with other observations if a welldeveloped low-level wind maximum occurs, and the height of this maximum isused as a height scale.  相似文献   

18.
The surface layer of an atmospheric boundary layer (ABL) is most accessible to field measurements and hence its ensemble-mean structure has been well established. The Kansas field measurements were the first detailed study of this layer, providing numerous benchmark statistical profiles for a wide range of stability states. Large-eddy simulation (LES), in contrast, is most suitable for studying the mixed layer of the ABL where the energy-containing range of the vertical velocity field is well resolved. In the surface layer, typical large-eddy simulations barely resolve the energy-containing vertical-velocity fields and hence do not provide sufficient data for a detailed analysis.We carried out a nested-mesh simulation of a moderately convective ABL (-zi/L = 8) in which the lower 6% of the boundary layer had an effective grid resolution of 5123. We analyze the LES fields above the 6th vertical grid level (z = 23 m) where the vertical velocity field has a well formed inertial subrange, for a detailed comparison with the Kansas results. Various terms in the budgets of turbulent kinetic energy, temperature variance, Reynolds stress, temperature flux, and some higher order moments are compared. The agreement is generally quite good; however, we do observe certain discrepancies, particularly in the terms involving pressure fluctuations.  相似文献   

19.
This paper presents the capabilities and limitations of using state-of-the-art kites for atmospheric research. A brief historical review of the subject is first presented, followed by an outline of the current status of kite-borne measurement technology. The utility of the technique is then illustrated by presenting a series of recent measurements made using kite-borne technology. A summary of the advantages and limitations of kite-based measurements relative to other technologies is provided for reference.  相似文献   

20.
The near-surface flow of a well-resolved large-eddy simulation of the neutrally-stratified planetary boundary layer is used to explore the relationships between coherent structures and the vertical momentum flux. The near-surface flow is characterized by transient streaks, which are alternating bands of relatively higher and lower speed flow that form parallel to the mean shear direction in the lower part of the boundary layer. Although individual streaks are transient, the overall flow is in a quasi-equilibrium state in which the streaks form, grow, decay and regenerate over lifetimes on the order of tens of minutes. Coupled with the streaky flow is an overturning circulation with alternating bands of updrafts and downdrafts approximately centered on the streaks. The surface stress is dominated by upward ejections of slower moving near-surface air and downward sweeps of higher speed air from higher in the boundary layer. Conditional sampling of the ejection and sweep events shows that they are compact, coherent structures and are intimately related to the streaks: ejections (sweeps) preferentially form in the updrafts (downdrafts) of the three-dimensional streak flow. Hence, consistent with other recent studies, we propose that the streak motion plays an important role in the maintenance of the surface stress by establishing the preferential conditions for the ejections and sweeps that dominate the surface stress. The velocity fluctuation spectra in the model near the surface have a k −1 spectral slope over an intermediate range of wavenumbers. This behaviour is consistent with recent theoretical predictions that attempt to evaluate the effects of organized flow, such as near-surface streaks, on the variance spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号