首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gully head and wall retreat has commonly been attributed to fluvial scour and head collapse as a result of soil saturation, sapping or piping. The empirical evidence to substantiate these conceptual models is sparse, however, and often contradictory. This paper explores the hydrological and mechanical controls on gully head and wall stability by modelling the hydrology, stability and elastic deformation of a marl gully complex in Granada Province, south‐east Spain. The hydrological and slope‐stability simulations show that saturated conditions can be reached only where preferential fissure flow channels water from tension cracks into the base of the gully head, and that vertical or subvertical heads will be stable unless saturation is achieved. Owing to the high unsaturated strengths of marl measured in this research, failure in unsaturated conditions is possible only where the gully head wall is significantly undercut. Head retreat thus requires the formation of either a tension crack or an undercut hollow. Finite‐element stress analysis of eroding slopes reveals a build up of shear stress at the gully head base, and a second stress anomaly just upslope of the head wall. Although tension cracks on gully heads have often been attributed to slope unloading, this research provides strong evidence that the so called ‘sapping hollow’ commonly found in the gully headwall base is also a function of stress release. Although further research is needed, it seems possible that ‘pop out’ failures in river channels may be caused by the same process. The hydrological analysis shows that, once a tension crack has developed, throughflow velocity in the gully headwall will increase by an order of magnitude, promoting piping and enlargement of this weakened area. It is, therefore, possible to envisage a cycle of gully expansion in which erosion, channel incision or human action unloads the slope below a gully head, leading to stress patterns that account for the tension crack and a stress‐release hollow. The tension crack promotes faster throughflow, encouraging hollow enlargement and piping, which undercut the gully head. The tension crack permits the development of positive pore‐water pressures behind the gully head, leading either to failure or contributing to toppling. Finally the debris may be eroded by fluvial action, unloading a new section of slope and completing the cycle of gully head retreat. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
The present analysis derives a stability criterion for long‐term equilibrium channel heads. The concept of finite perturbation analysis is presented, during which the surface is subjected to perturbations of a finite amplitude and resulting changes in flow path structure and slope are computed. Based on these quantities the analysis predicts whether the perturbed location is going to erode, be filled in or remain steady. The channel head is defined geometrically as the focus point of converging flow lines at the bottom of hollows. It is demonstrated that stability at the channel head grows out of the competition between the rate of flow path convergence and the degree of profile concavity. Analytical functions are derived to compute channel head‐contributing area and ‐slope, flow path convergence and profile concavity as a function of perturbation depth, distance from the crest and the initial slope. In a numerical model these quantities point to the long‐term equilibrium channel head position, which is shown to depend also on the width to length ratio of hollows. It is also demonstrated that the equilibrium channel head position is sensitive to the base‐level lowering/non‐dimensional slope length ratio and to the slope of the initial topography. Morphometrical measurements both in the field and on simulated topographies were used to test the theoretical predictions.  相似文献   

3.
Tracer studies are a commonly used tool to develop and test Einstein-type stochastic bedload transport models. The movements of these tracers are controlled by many factors including grain characteristics, hydrologic forcing, and channel morphology. Although the influence of these sediment storage zones related to morphological features (e.g., bars, pools, riffles) have long been observed to “trap” bedload particles in transport, this influence has not been adequately quantified. In this paper we explore the influence of channel morphology on particle travel distances through the development of a Bayesian survival process model. This model simulates particle path length distributions using a location-specific “trapping probability” parameter (pi ), which is estimated using the starting and ending locations of bedload tracers. We test this model using a field tracer study from Halfmoon Creek, Colorado. We find that (1) the model is able to adequately recreate the observed multi-modal path length distributions, (2) particles tend to accumulate in trapping zones, especially during large floods, and (3) particles entrained near a trapping zone will travel a shorter distance than one that is further away. Particle starting positions can affect path lengths by as much as a factor of two, which we confirm by modelling “starting-location-specific” path length probability distributions. This study highlights the importance of considering both tracer locations and channel topography in examinations of field tracer studies. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilize the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross‐section geometry and channel long‐profile variability on flood dynamics is examined using an ensemble of a 1D–2D hydraulic model (LISFLOOD‐FP) of the ~1 : 2000 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of simulated scenarios of channel erosional changes were constructed on the basis of a simple velocity‐based model of critical entrainment. A Monte‐Carlo simulation framework was used to quantify the effects of this channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected an approximation of the observed patterns of spatial erosion that enveloped observed erosion depths. The effect of uncertainty on channel long‐profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude of event modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead, morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel‐bed rivers such as the one used in this research. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Research on in-channel sand mining is imperative as it may have a significant impact on channel morphology. Following this quest to quantitatively comprehend the phenomenon, experimental studies were done to investigate the dynamic characteristics of the migration of a mining pit. The evaluation of the migration rate of a mining pit in a physical scale model has found a rise in the migration rate of the pit's upstream edge with increasing discharge. A wavelet analysis applied for analyzing scale-dependent migration of the bed profile of a mining pit also revealed similar findings. Additionally, the wavelet analysis examined the length-scale dependent migration of a mining pit and a decrease in the migration rate has been observed with an increase in the length scale. The plan form of a pit (length-to-width ratio) governs the erosion and deposition processes around the pit. Both physical and statistical approaches show an increase in the migration rate with an increase in the length-to-width ratio of the pit. An empirical formulation has been developed for calculating the migration rate of the upstream edge of a mining pit based on pit geometry (length-to-width ratio), average flow velocity, and critical shear stress of the bed material. The results also show a higher bed load transport rate in the channel subjected to mining as compared to a plain bed channel.  相似文献   

6.
This paper presents flume and field observations of a bank-confined braided river. Morphological features, including plan form configuration, channel width, and main channel migration, were examined by a series of experiments. Repeated measurements of channel morphology, provided a basis to estimate the relationship between noncumulative frequency of bars and bar area. Additional results from the Dajia River, located in Central Western Taiwan, were presented to provide a reference data set for comparing the laboratory and field data. The results indicate that the relationship between bar length and width can be predicted by a simple best-fit power function relating to self-similarity characteristics. The Hurst index by Walsh and Hicks (2002) provides acceptable predictions of the bar length and width observed in the experiments and confirmed by the field investigations. Eexperimental and field results both show that large river width yields a uniform distribution of bar areas with the similar discharge, leading to a large value of exponent (β) in the model. The river width is confirmed to be a critical parameter in the main channel shift. A small increase in channel width likely increased rapidly the shift cycle.  相似文献   

7.
Mechanistic models have been proposed for soil piping and internal erosion on well‐compacted levees and dams, but limited research has evaluated these models in less compacted (more erodible) soils typical of hillslopes and streambanks. This study utilized a soil box (50 cm long, 50 cm wide and 20 cm tall) to conduct constant‐head, soil pipe and internal erosion experiments for two soils (clay loam from Dry Creek and sandy loam from Cow Creek streambanks) packed at uniform bulk densities. Initial gravimetric moisture contents prior to packing were 10, 12 and 14% for Dry Creek soil and 8, 12, and 14% for Cow Creek soil. A 1‐cm diameter rod was placed horizontally along the length of the soil bed during packing and carefully removed after packing to create a continuous soil pipe. A constant head was maintained at the inflow end. Flow rates and sediment concentrations were measured from the pipe outlet. Replicate submerged jet erosion tests (JETs) were conducted to derive erodibility parameters for repacked samples at the same moisture contents. Flow rates from the box experiments were used to calibrate the mechanistic model. The influence of the initial moisture content was apparent, with some pipes (8% moisture content) expanding so fast that limited data was collected. The mechanistic model was able to estimate equivalent flow rates to those observed in the experiments, but had difficulty matching observed sediment concentrations when the pipes rapidly expanded. The JETs predicted similar erodibility coefficients compared to the mechanistic model for the more erodible cases but not for the less erodible cases (14% moisture content). Improved models are needed that better define the changing soil pipe cross‐section during supply‐ and transport‐limited internal erosion, especially for piping through lower compacted (more erodible) soils as opposed to more well‐compacted soils resulting from constructing levees and dams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
1 INTRODUTIONTaiwan is a hilly-mountainous island lying across the center of the tropic. The slopeland accounts fortwo thirds of the total area of Taiwan. Most mountains are consisted of geologically young rocks incategories of fissile slates and shales which are easily eroded by weather. TOrrents combined with fissileslates and shales form debris flows with a very strong destrUctive power. This kind of debris flow canpotentially occur for almost all torrents whose gradient is steeper th…  相似文献   

9.
Natural piping doubles the dynamic contributing area on the upper Maesnant stream in mid-Wales, mainly through linking points well beyond the riparian zones of seepage to the stream. Both discharge and sediment transport rates in the major pipes are closely related to the size of shallow surface microtopographic hollows in which they lie, and which themselves are largely created by piping erosion. However, pipe dischrges are frequently generated by contributing areas larger than these surface depressions and some pipes run counter to the surface topography. The redistribution and acceleration of hillslope drainage processes by piping has implications for theories of hillslope development, especially through plan-form modifications, and also for channel discharge and erosion.  相似文献   

10.
Following the implementation of the European Water Framework Directive (WFD) and the need to reach a “good ecological status” for rivers, key-questions are being raised about braided rivers. Before any environmental policy can be drawn up, these rivers need to be located, long term changes must be evaluated, and the regional diversity of such systems must be understood, as their inner complexity has not yet been well studied. Therefore, the aim of this work is to carry out a census of the braided channels of the French Alps and to establish a typology based on basic geomorphic indicators. A minimum estimate of the cumulative length of braided rivers prior to major infrastructure construction amounted to 1214 km. Around 53% of these rivers have disappeared during the last two centuries in relation to embankment or channelization, but a loss of 17% is still unexplained. The range in catchment size, mean slope and active channel width has been determined for the Western Alpine braided channels as well as the range in changes due to narrowing, widening and shifting. Seven types of braided rivers have been distinguished based on geographical settings (climate conditions and geology) and differences in terms of adjustment to human pressure on peak flow and sediment delivery. The percentage area of islands in the active channel and the relative length of banks also show a regional difference. Maximum and minimum thresholds of braided activity have been established taking into account the active channel width and the catchment area. The position of the studied reaches between these two thresholds are discussed in relation to position of rivers known in the literature, considering both long-term trends and short-term fluctuations in channel width.  相似文献   

11.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

12.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Among various factors that have influence on the meandering of an alluvial channel, the most significant are valley slope, discharge, bed material, and time. The necessary condition for the origin and development of meandering of an alluvial channel is the erosion of bed material and deposition of the eroded material downstream. The criterion for the development of the meandering is that the discharge must be equal to or greater than the critical discharge (i.e., discharge corresponding to critical shear velocity). The initial channel section has an effect on the development of meandering. The meandering in the V-shaped channels starts from the center (deepest point) of the channel and works inside the banks (inside meandering) before it windens the banks, While the meandering in the rectangular channels starts with the widening of the banks (outside meandering). Maender width increases with the increase in the increase discharge and slope, and decreases with the increase in size of bed material. The meander development continues with time the meander reaches the final stage and equilibrium condition.  相似文献   

14.
Chen X  Yin Y 《Ground water》2004,42(1):92-96
In the analysis of streamflow depletion, the Hunt (1999) solution has an important advantage because it considers a partially penetrating stream. By extending the Hunt drawdown solution, this paper presents semianalytical solutions for gaining streams that evaluate the induced stream infiltration and base flow reduction separately. Simulation results show that for a given deltah (the initial hydraulic head difference between stream and aquifer beneath the channel), the base flow reduction is in direct proportion to the product of streambed leakage (lambda) and the distance between pumping well and stream (L), and the induced stream infiltration is in inverse proportion to lambdaL. Deltah has a significant effect on the ratio of stream infiltration to base flow reduction. The results from the semianalytical solutions agree well with those from MODFLOW simulations. The semianalytical solutions are useful in the verification of numerical simulations and in the analysis of stream-aquifer interactions where water quantity or quality is concerned.  相似文献   

15.
Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
ON THE SHRINKAGE OF RIVER CHANNEL   总被引:1,自引:0,他引:1  
ONTHESHRINKAGEOFRIVERCHANNELCHENDong1,CAOWenhong2andZHANGQishun3ABSTRACTAlongwiththerapiddevelopmentofsocialeconomy,developme...  相似文献   

17.
Seismic base isolation effect in a liquefied sand layer was investigated based on soil properties measured in a series of undrained cyclic triaxial tests. Transmission of seismic wave in a soil model consisting of a liquefied surface layer and an underlying nonliquefied layer was analyzed in terms of energy, considering liquefaction-induced changes in S-wave velocity and internal damping. It was found that, between two different base-isolation mechanisms, a drastic increase in wave attenuation in the liquefied layer due to shortening wave length gives a greater impact on the base isolation with increasing thickness of the liquefied layer than the change of seismic impedance between the liquefied and nonliquefied layer. Also indicated was that cyclic mobility behavior in dilative clean sand tends to decrease the seismic isolation effect to a certain extent.  相似文献   

18.
Soil piping is a widespread, although often overlooked land degradation process. So far, subsurface soil erosion studies have been focused on the importance of soil piping in hydrological and geomorphological processes, and factors controlling piping processes. Nowadays, the environmental changes being caused by the Anthropocene have clearly demonstrated that society depends on soil more than ever before, so the traditional studies of soil erosion processes need to be redefined. In that sense, geomorphologists face to overcome new piping-related problems. In this article we identify new possible areas of research: (i) soil pipes and pipe collapses (PCs) as natural hazards, (ii) role of soil piping in carbon cycle, (iii) soil pipes and PCs and their relationships with biodiversity, and (iv) piping-affected areas as geodiversity sites. Only better recognition of natural hazards driven by soil piping, such as land subsidence and degradation, landslides, flooding and off-site sediment effects may result in better prevention and control measures in piping-affected areas. Moreover, in the context of Global Change the role of soil piping in carbon cycle should be raised. Land-use and land-cover changes, as well as climate change may affect piping dynamics in different morphoclimatic regions and soil loss due to piping may lead to carbon loss. Soil pipes and PCs are closely interlinked with biodiversity, both positively and negatively. Piping erosion may directly and indirectly destroy vegetation and animals, although in some cases piping erosion may create new habitats and provide favourable conditions for some species. However, soil piping is not only an environmental and societal problem, but it may also contribute to the world geodiversity, which is clearly observed in badland sites. Piping erosion may have a significant impact on environment and society, thus further research with new questions is essential to provide knowledge for sustainable development.  相似文献   

19.
A five-stage model of the development of cross-sectional asymmetry is proposed in which alternating bar deposition and bed scour are important elements. Quasi-periodic reversals in the sense of asymmetry and a progressive increase in the magnitude of asymmetry at sections which develop an asymmetry initially are major features of the model. Application of Bridge's (1977) model confirms several features of the model and suggests that the degree of asymmetry is directly related to bend curvature. After the initial stages, subsequent changes to the cross-sectional and planimetric form of the channel may be intensified by the developing asymmetry through a system of positive feedbacks in which the levels of form and flow distortion are interrelated. Asymmetry appears to provide an important link between cross-sectional and plan form adjustment. Spatial series of asymmetry obtained for three lengths along a mountain stream contain features predicted by the model. In particular, the dominant peak in spectral density functions occurs at a frequency with a corresponding wavelength close to 4πw which has significance in terms of the meander wavelength-width relationship (Richards, 1976a). This consistency is remarkable considering local differences. In addition, sections in curved reaches tend to be more asymmetric, especially when sited at pools. However, contrary to expectation, channel width is not significantly correlated with asymmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号