首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.  相似文献   

2.
The 2006 eruption of Augustine Volcano, Alaska, began with an explosive phase comprising 13 discrete Vulcanian blasts. These events generated ash plumes reaching heights of 3–14 km. The eruption was recorded by a dense geophysical network including a pressure sensor located 3.2 km from the vent. Infrasonic signals recorded in association with the eruptions have maximum pressures ranging from 13–111 Pa. Eruption durations are estimated to range from 55–350 s. Neither of these parameters, however, correlates with eruption plume height. The pressure record, however, can be used to estimate the velocity and flux of material erupting from the vent, assuming that the sound is generated as a dipole source. Eruptive flux, in turn, is used to estimate plume height, assuming that the plume rises as a buoyant thermal. Plume heights estimated in this way correlate well with observations. Events that exhibit strongly impulsive waveforms are underestimated by the model, suggesting that flow may have been supersonic.  相似文献   

3.
In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.  相似文献   

4.
Mount Cameroon is an active volcano located in the Gulf of Guinea, west of Central Africa. After the March–April 1999 eruption on the SW flank, another eruption of the volcano occurred in 2000. It took place from three sites on the southwest flank and near the summit. The first eruptive site was located 500 m to the southwest of the summit, at 3900 m altitude. Activity on this site was mainly explosive with no lava flow. The second site was located between 3220 and 3470 m altitude. Lava was emitted along NNE–SSE fissures from this site and flew towards Buea, the main city of the area, stopping ~ 4 km from the first houses. The last site was located in the south western flank at 2750 m altitude. The lava ejected from an old cone near the first 1999 eruptive site was divided into two branches, for a total length of around 1 km. The location of active volcanic cones in 1999 and 2000 seems to be linked to the local tectonics. The pre-eruptive period was characterized by a seismic swarm which may be a precursor recorded in March 2000 by an analogue seismic station. The main shock was a magnitude 3.2 event, and was felt by the population in Ekona town located on the eastern flank. It had a Modified Mercalli intensity of III–IV. When the eruption started, a temporary network of short period 3-component seismic stations was set up around the volcano to improve the monitoring of seismic activity. The co-eruptive period from late May to September was characterized by sequences of earthquake swarms, volcanic tremor and a family of earthquakes having similar waveform and appearing regularly in August and early September. Some of the earthquakes were felt by the population in Buea and its environments. The largest seismic event recorded had a magnitude of 4. During the post-eruptive period from mid-September to December, seismicity returned to its background level of 1–3 earthquakes per 3 days. Hypocenter locations reveal a linear narrow structure under the summit zone which could represent the magmatic conduit of the volcano. The frequency/magnitude relationship revealed a b-value of 1.43 higher than those previously determined, but more representative of volcanic media. Seismic energy release was gradual after the 2000 eruption started.  相似文献   

5.
The 5 April 2003 paroxysmal explosion at Stromboli volcano was one of the strongest explosive events of the last century. It occurred while the effusive eruption, begun on 28 December 2002 and finished on 22 July 2003, was still on going and the summit craters of the volcano were obstructed. In this paper, we present a reconstruction of the sequence of events based on thermal and visual images collected from helicopter before, during and immediately after the paroxysm. One month before the blast, ash emission and temperature increase at the bottom of the summit craters were observed. An increasing amount of juvenile components in the emitted ash during March suggested that the magma level within the crater was rising accordingly. Hot degassing vents at the bottom of the summit craters were not persistent, and the craters remained almost entirely obstructed by talus accumulation until the paroxysm occurred. Three minutes before the explosion, we recorded a significant increase in temperature inside Crater 1, accompanied by a thicker gas plume. Thirty-two seconds before the blast, reddish ash was emitted from Crater 1. The paroxysm produced a vulcanian explosion that opened the feeder conduit, obstructed for over three months. The blast was accompanied by a shock wave recorded by the INGV seismic network at 07:13:37 GMT. Explosions with hot material started from Crater 1, and after 15 s propagated to Crater 3, about 100 m away. The velocity of ejecta was ∼80 m s 1, and increased when the eruptive plumes from both craters merged together during the vulcanian phase. An eruptive column rose 1 km above the top of the volcano, and explosions continued mainly at Crater 3. The paroxysm lasted about 9 min, with bombs up to 4 m wide falling on the village of Ginostra, on the west flank of the island, and destroying two houses. This event signalled the start of the declining phase of the effusive eruption, suggesting that the feeder conduit was returning to its former steady conditions, with open vents and continuous, mild strombolian activity.  相似文献   

6.
We report a compilation of data recorded at a distant tiltmeter station (RER) during recent episodes of dyke emplacement and eruption (2003–2007) at Piton de La Fournaise volcano (La Réunion Island). This sensitive station provides useful information for evaluating the extent of deformation. Distinct responses of this station were recorded based on the eruption type. Dykes feeding summit eruptions did not significantly influence the RER tiltmeter signals, whereas dykes feeding large distal eruptions (with vents located more than 4 km from the summit) generated up to 1.4 μrad of tilt, an amplitude 2 to 4 times greater than for proximal eruptions (0.3–0.7 μrad) on the flanks of the summit cone. The distinct tilt amplitude is directly linked to the location, depth, and volume of the dyke. Comparison with summit tiltmeters reveals that up to one-third to half of the RER tilt signal associated to dyke propagation is recorded when the dyke is still below the summit crater. Thus, before large distal eruptions, more than 0.5 μrad of tilt is recorded in less than 20 min when the dyke is below the summit crater (i.e. a few minutes/hours before the beginning of the eruption). We can thus propose for the RER station a threshold value of 0.5 μrad which, when reached as a dyke rises beneath the summit crater, suggests a high likelihood of a large distal eruption. The distant RER tiltmeter station thus appears to be a powerful tool for forecasting the type of eruption that is likely to occur, and can contribute to the early detection of large distal eruptions at Piton de La Fournaise, which are the most dangerous to inhabitants. For volcano monitoring, installation of high precision distant tiltmeters along the lower slopes of a volcano may provide warnings of large eruptions with enough lead time to allow for short-term hazards mitigation efforts.  相似文献   

7.
《Journal of Geodynamics》2007,43(2):320-329
A 2.5-month long gravity sequence, encompassing the starting period of the 2002–2003 Etna eruption and coming from a summit station only 1 km away from the new fractures, is presented and discussed. The sequence comprises four hours-long anomalies that have a great chance to reflect mass redistributions linked to the ensuing activity. In particular, the start of the eruptive activity on the northeastern flank was marked by a gravity decrease as strong as about 400 μGal, which reverted soon afterwards. This strong decrease/increase anomaly is interpreted as the opening, by tectonic forces, of a fracture system along the Northeastern Rift of Mt. Etna, followed by an intrusion of magma from the central conduit to the new fractures. They were used by the intruding magma as a path to the eruptive vents at lower elevations.Afterwards, on three occasions, in November and December 2002, 6–12 h-lasting gravity decreases, with amplitude ranging between 10 and 30 μGal, were observed simultaneously with increases in the amplitude of the volcanic tremor from four seismic stations. A correlation analysis, between the gravity signal and the overall spectral amplitude of each tremor sequence is performed over the 7 November–9 December period. A marked anti-correlation is found over each contemporaneous gravity decrease/tremor increase, while, over the rest of the investigated period, the correlation is negligible. Accordingly, a joint source is inferred to have acted during the occurrence of the three common anomalies. On the grounds of some volcanological observations spanning the period covered by our analysis, we propose the temporary accumulation of a gas cloud at some level within the plumbing system of the volcano to have acted as a joint source.The present work is a further evidence of the potential of continuous gravity observations as a tool to monitor and study active volcanoes and encourages their employment in spite of the difficulty of running spring gravimeters in a continuous fashion under the adverse conditions normally encountered on the summit zone of an active volcano.  相似文献   

8.
Seismic activity has been postulated as a trigger of volcanic eruption on a range of timescales, but demonstrating the occurrence of triggered eruptions on timescales beyond a few days has proven difficult using global datasets. Here, we use the historic earthquake and eruption records of Chile and the Andean southern volcanic zone to investigate eruption rates following large earthquakes. We show a significant increase in eruption rate following earthquakes of MW > 8, notably in 1906 and 1960, with similar occurrences further back in the record. Eruption rates are enhanced above background levels for ~ 12 months following the 1906 and 1960 earthquakes, with the onset of 3–4 eruptions estimated to have been seismically influenced in each instance. Eruption locations suggest that these effects occur from the near-field to distances of ~ 500 km or more beyond the limits of the earthquake rupture zone. This suggests that both dynamic and static stresses associated with large earthquakes are important in eruption-triggering processes and have the potential to initiate volcanic eruption in arc settings over timescales of several months.  相似文献   

9.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   

10.
The local seismicity during the 2012–2013 eruption of Tolbachik Volcano and the 2008–2009 steam–gas eruption of Koryakskii Volcano is here considered as resulting from injections of magma that produced dikes, sills, and renewed activity at preexisting faults. We identified plane-oriented earthquake clusters in order to reveal the above zones using earthquake catalogs made at the Kamchatka Branch of the Geophysical Service of the Russian Academy of Sciences (KB GS RAS). Subsequent space–time analysis of these observations lends itself to the following interpretation. The November 27, 2012 Tolbachik lava eruption was preceded by an injection of magma resulting in a series of dikes trending west-northwestward in the range of absolute depths between–4 and +3 km in a zone situated southeast of the Ploskii Tolbachik Volcano edifice. The dikes penetrated into a nearly horizontal permeable zone at an absolute depth of approximately zero, producing sills and emplacing a magma-conducting dike along the top of the zone of cinder cones (the dip angle is 50° toward the azimuth 300°) 5.5 km from the epicenter of the initial magma injection. The summit steam–gas eruption of Koryakskii Volcano in 2008–2009 was preceded by magma filling a crustal chamber (the top of the chamber is at–3 km absolute depth; the chamber is 2.5 km across) close to the southwestern base of Koryakskii. Further, magma injection in a nearly north–south zone (7.5 by 2.5 km), the absolute depth between–2 and–5 km) in the north sector of Koryakskii Volcano was occurring concurrently with the summit steam–gas eruption. The injection of magma into the cone of Avacha Volcano (2010) produced sills (at altitudes between +1600 and +1900 m) and dikes (mostly striking northwest).  相似文献   

11.
Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour ‘explosive’ eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption.Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.  相似文献   

12.
The seismicity that accompanied the Tolbachik Fissure Eruption was recorded by additional seismic stations that were installed in the southern Klyuchevskoi Volcanic Cluster area in January to October 2013. We used broadband (0.033–50 Hz) three-component digital Guralp CMG-6TD seismometers. This temporary network provided seismicity data at a lower energy level than can be done using the regional seismograph network of Kamchatka. The processing of the resulting digital records supplied data for compiling a catalog of over 700 M L = 0–3.5 (K S = 1.5–8.5) earthquakes, which is an order of magnitude greater than the number of events located by the regional network for the same period of time. The seismicity in the area of Ploskii Tolbachik Volcano was found to concentrate mostly in spatially isolated areas during the eruption. The main isolated clusters of earthquakes were identified both in the eruption area itself and along the periphery of Ploskii Tolbachik Volcano, in the area of the Zimina volcanic massif, and in the Tolud epicenter zone; the eruption zone was not dominant in the seismicity. The region of a shallow seismicity increase beneath Ploskii Tolbachik before the eruption was not found to exhibit any increased activity during the time the temporary seismograph network was operated, which means that a seismicity inversion took place at the beginning of the eruption. We discuss the question of what the earthquake-generating features are that we have identified.  相似文献   

13.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

14.
Shishaldin Volcano, in the central Aleutian volcanic arc, became seismically restless during the summer of 1998. Increasing unrest was monitored using a newly installed seismic network, weather satellites, and rare local visual observations. The unrest culminated in large eruptions on 19 April and 22-23 April 1999. The opening phase of the 19 April eruption produced a sub-Plinian column that rose to 16 km before rapidly dissipating. About 80 min into the 19 April event we infer that the eruption style transitioned to vigorous Strombolian fountaining. Exceptionally vigorous seismic tremor heralded the 23 April eruption, which produced a large thermal anomaly observable by satellite, but only a modest, 6-km-high plume. There are no ground-based visual observations of this eruption; however we infer that there was renewed, vigorous Strombolian fountaining. Smaller low-level ash-rich plumes were produced through the end of May 1999. The lava that erupted was evolved basalt with about 49% SiO2. Subsequent field investigations have been unable to find a distinction between deposits from each of the two major eruptive episodes.  相似文献   

15.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   

16.
This paper is concerned with eruptions, seismicity, and deformation on Klyuchevskoi Volcano during the summit eruptions of 2012–2013, with the condition of the central crater during the eruptions, and with the effect that is exerted by the height of the lava in the crater on the start of the eruptions. The recurrence of eruptions in the North Volcanic Cluster (NVC), Kamchatka showed that all the four volcanoes in the cluster (Klyuchevskoi, Tolbachik, Shiveluch, and Bezymyannyi) become active during definite phases that were identified in the 18.6-year lunar cycle. This relationship of the NVC eruptions to the active phases in the 18.6-year lunar cycle, as well as the relationship to the 11-year solar activity, showed that eruptions can be predicted, yielding long-term estimates of activity for the NVC volcanoes. The short-term prediction of volcanic eruptions requires knowledge of seismicity and deformation that occur during the precursory period and during the occurrence of eruptions. Seismic activity during the summit eruptions of 2003–2013 took place in the depth range 20–25 km during repose periods of the volcano and at depths of 0–5 km in the volcanic edifice during the eruption. One notes an almost complete absence of any earthquakes at great depths during the summit eruptions. Volcanic tremor (VT) was recorded from the time that the eruptions began and continued to occur until the end. Geodetic measurements showed that the center of the magma pressure beneath the volcano during the parasitic and summit eruptions of 1979–1989 moved in the 4–17 km depth range, while during the summit eruptions of 2003–2013 the center moved in the 15–20 km range. These changes in the depth of the center of magma pressure may have been related to evacuation from shallow magma chambers.  相似文献   

17.
We investigate the source mechanism of long-period (LP) events observed at Kusatsu–Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1–3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake.  相似文献   

18.
Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ~ 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ~ 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions.The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ~ 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ~ 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.  相似文献   

19.
Coloumbo submarine volcano lies 6.5 km offshore the NE part of the Santorini island complex and exhibits high seismicity along with vigorous hydrothermal activity. This study models the local stress field around Coloumbo's magma chamber and investigates its influence on intrusion emplacement and geometry. The two components of the stress field, hoop and radial stress, are calculated using analytical formulas that take into account the depth and radius of the magma chamber as these are determined from seismological and other observations. These calculations indicate that hoop stress at the chamber walls is maximum at an angle of 74° thus favouring flank intrusions, while the radial stress switches from tensile to compressive at a critical distance of 5.7 km from the center of the magma chamber. Such estimates agree well with neotectonic and seismological observations that describe the local/regional stress field in the area. We analyse in detail the case where a flank intrusion reaches the surface very near the NE coast of Thera as this is the worst-case eruption scenario. The geometrical features of such a feeder dyke point to an average volumetric flow rate of 9.93 m3 s−1 which corresponds to a Volcanic Explosivity Index of 3 if a future eruption lasts about 70 days. Hazards associated with such an eruption include ashfall, ballistic ejecta and base surges due to explosive mixing of magma with seawater. Previous studies have shown that areas near erupting vents are also foci of moderate to large earthquakes that precede or accompany an eruption. Our calculations show that a shallow event (3–5 km) of moment magnitude 5.9 near the eruptive vent may cause Peak Ground Acceleration in the range 122–177 cm s−2 at different locations around Santorini. These values indicate that seismic hazard even due to a moderate earthquake near Coloumbo, is not trivial and may have a significant impact especially on older buildings at Thera island.  相似文献   

20.
We implement an infrasound semblance technique to identify acoustic sources originating from volcanic vents and apply the technique to the generally low-amplitude infrasound (< 3 Pa at 1 km) signals produced by Santiaguito dome in Guatemala. Semblance detection is demonstrated with data collected from two-element miniature arrays with ~ 30 m spacing between elements. The semblance technique is effective at identifying a range of eruptive phenomena, including pyroclastic-laden eruptions, vigorous degassing events, and rockfalls, even during periods of high wind contamination Many of the detected events are low in amplitude (tens of mPa) such that they are observed only by select arrays positioned with proximity and line-of-sight to the source. Larger events, such as the pyroclastic-laden eruptions, which occurred bi-hourly in 2009, were detected by all five arrays and produced an infrasonic signal that was correlated across the network. Network correlated events can be roughly located and map to the summit of the Caliente Vent where pyroclastic-laden eruptions originate. In general, the degree of Santiaguito infrasound event correlation is poor across the network, suggesting that complex source geometry contributes to asymmetric sound radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号