首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sendai Bay is located on the Pacific coast of northern Japan and suffered serious damage following the 2011 off the Pacific coast of Tohoku earthquake and tsunami in March 2011. To assess the impact on the marine ecosystem, information was needed on the phytoplankton communities and their seasonal variation. However, such information was limited. Therefore, an intensive monitoring of the phytoplankton was carried out from March 2012 to April 2014. Seasonal variation of the phytoplankton community was similar at coastal and offshore stations. Total phytoplankton biomass, based on Chl a concentration, peaked in spring and then decreased to a minimum in summer, before gradually increasing during early winter and peaking again in the following spring. This seasonal pattern was consistent with previous studies conducted before the earthquake and tsunami. Also, size structure of the phytoplankton community and its four main groups was estimated from the size-fractioned samples of Chl a. Our results also showed that the spring bloom consisted of large diatoms, with their growth ceasing due to nitrogen depletion. The bloom was followed by a summer period where cyanobacteria and picoeukaryote became dominant, with high cell densities in spite of low nutrient concentrations. In addition, sporadic environmental changes, such as those following typhoons, were observed. These resulted in large increases/decreases in individual phytoplankton groups.  相似文献   

2.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

3.
To investigate the seasonal variation and community structure of nano- and microzooplankton in Gyeonggi Bay of the Yellow Sea, the abundance and carbon biomass of nano- and microzooplankton were evaluated at 10-day intervals from January 1997 to December 1999. Four major groups of nano- and microzooplankton communities were classified: heterotrophic ciliates, heterotrophic dinoflagellates (HDF), heterotrophic nanoflagellates (HNF), and copepod nauplii. The total carbon biomass of nano- and microzooplankton ranged from 10.2 to 168.8 μg C L−1 and was highest during or after phytoplankton blooms. Nano- and microzooplankton communities were composed of heterotrophic ciliates (7.4–81.4%; average 41.7% of total biomass), HDF (0.1–70.3%; average 26.1% of total biomass), copepod nauplii (1.6–70.6%; average 20.7% of total biomass), and HNF (0.8–59.5%; average 11.5% of total biomass). The relative contribution of individual components in the nano- and microzooplankton communities appeared to differ by seasons. Ciliates accounted for the most major component of nano- and microzooplankton communities, except during summer and phytoplankton blooming seasons, whereas HDF were more dominant during the phytoplankton blooming seasons. The abundance and biomass of nano- and microzooplankton generally followed the seasonal dynamics of phytoplankton. The size and community distribution of nano- and microzooplankton was positively correlated with size-fractionated phytoplankton. The carbon requirement of microzooplankton ranged from 60 to 83% of daily primary production, and was relatively high when phytoplankton biomass was high. Therefore, our result suggests that the seasonal variation in the community and size composition of nano- and microzooplankton appears to be primarily governed by phytoplankton size and concentration as a food source, and their abundance may greatly affect trophic dynamics by controlling the seasonal abundance of phytoplankton.  相似文献   

4.
The absorption spectrum of phytoplankton is an important bio-optical parameter for ocean color hyperspectral remote sensing;its magnitude and shape can be aff ected considerably by pigment composition and concentration. We conducted Gaussian decomposition to the absorption spectra of phytoplankton pigment and studied the spectral components of the phytoplankton, in which the package effect was investigated using pigment concentration data and phytoplankton absorption spectra. The decomposition results were compared with the corresponding concentrations of the five main pigment groups (chlorophylls a , b , and c , photo-synthetic carotenoids (PSC), and photo-protective carotenoids (PPC)). The results indicate that the majority of residual errors in the Gaussian decomposition are <0.001 m^-1 , and R 2 of the power regression between characteristic bands and HPLC pigment concentrations (except for chlorophyll b) was 0.65 or greater for surface water samples at autumn cruise. In addition, we determined a strong predictive capability for chlorophylls a , c , PPC, and PSC. We also tested the estimation of pigment concentrations from the empirical specific absorption coeffi cient of pigment composition. The empirical decomposition showed that the Ficek model was the closest to the original spectra with the smallest residual errors.The pigment decomposition results and HPLC measurements of pigment concentration are in a high consistency as the scatter plots are distributed largely near the 1:1 line in spite of prominent seasonal variations. The Wozniak model showed a better fit than the Ficek model for Ch1 a , and the median relative error was small. The pigment component information estimated from the phytoplankton absorption spectra can help better remote sensing of hyperspectral ocean color that related to the changes in phytoplankton communities and varieties.  相似文献   

5.
2009—2011年东海陆架海域网采浮游植物群落的季节变化   总被引:3,自引:0,他引:3  
刘海娇  傅文诚  孙军 《海洋学报》2015,37(10):106-122
根据2009年7、8月(夏季)、12月到翌年1月(冬季)、2010年11月(秋季)和2011年4、5月(春季)共4个航次在东海陆架区进行的现场多学科综合调查,报道了4个季节在整个东海海域的浮游植物的空间分布及群落结构特征,并探讨了影响其分布格局的环境因子效应。结果表明,东海浮游植物群落主要由硅藻、甲藻组成。共检出浮游植物5门88属299种(含未定种)。调查区夏季细胞丰度达最高,平均为(8 659.572±28 937.27)cell/L,其次是秋、冬季,春季最低,分别为(4 413.726±12 534.573)cell/L、(421.773±647.532)cell/L和(218.479±265.897)cell/L。硅藻细胞丰度在夏、秋、冬3个季节占总平均丰度的95%以上,甲藻细胞丰度在春季最高,占总浮游植物细胞丰度的69%。调查海区浮游植物丰度高值区主要集中在长江口海域,并向外海呈递减趋势。不同群落间存在季节更替和演替现象。物种丰富度自春夏秋冬逐渐升高。香农指数(Shannon-Wiener index)和均匀度指数(Pielou index)分布较为一致,物种丰富度指数(Margalef index)呈现时空分布差异。Pearson相关分析结果表明:不同季节的物种间更迭与海区特定的物理化学参数显著相关。  相似文献   

6.
IThe Phytoplankton spoteS succession is a major characteristic Of PhytOPlankton behavior inthe an, and is Of major swificance tO PhytOPlankton d~cs and in coupling the PhytOPlankton cornxnunity to hasher trophic levels (Smayda, 1980). But another conception species ence that be defined by BraarUd often confUSeS with speCies sucCeSSion. Spotes su~ is thechange of speCies compeition within a given water mass resulting from changing physical,chemical and biological factors within the wa…  相似文献   

7.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

8.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   

9.
Nematode species composition, trophic structure and body size distributions were followed over an annual production cycle in the central North Sea; to test responses to temporally changing food quality and quantity in the sediment. Changes in the phytoplankton concentration in the water column were quantitatively reflected in the concentration of chlorophyll a and breakdown products in the sediment, with higher concentrations in spring and autumn following blooms, and lower concentrations in summer and winter. The taxonomic and trophic structure of nematode communities differed significantly among stations over relatively short distances, potentially masking some of the temporal dynamics. Spatio-temporal differences in nematode species composition were linked to changes in the quality and quantity of organic material reaching the seabed, reflecting a species-specific response to the nutritional quality of sedimenting organic material and the biochemical changes in the sediment associated with its decomposition. The size distributions of selected nematode species indicated that most species bred continuously throughout the sampling period, although one species, the epigrowth feeder Spilophorella paradoxa, had periods of increased growth following the deposition of the spring phytoplankton bloom. There was no consistent temporal relationship between the trophic composition of nematode communities and spring chlorophyll a or carbon sedimentation, most likely a result of the trophic plasticity of most feeding types and the capacity of the community to use both freshly sedimented material as well as the subsequent breakdown products and refractory organic matter. Community metrics implied that there were small responses to the seasonal production cycle, but these belied strong responses of a few species with life histories that allowed them to track the availability of suitable food resources.  相似文献   

10.
大亚湾生态监控区的浮游植物年际变化   总被引:2,自引:0,他引:2  
依据国家海洋局、国家海洋局第三海洋研究所等权威机构2004~2007年所获的数据和资料,对大亚湾生态监控区近4a长时间尺度的浮游植物群落年际变化进行分析,通过物种组成、丰度变化、优势类群演替、群落结构及赤潮灾害事件来反映生境的退化,探讨其变化的主要原因及趋势。结果表明,浮游植物群落由暖水种占绝对优势转变为广温广布种占主导地位。种类与丰度呈逐年下降的态势,浮游植物丰度的分布保持西高东低,近岸高于远岸的特征,浮游植物的高丰度与营养盐丰富及温排水有关。终年以硅藻为优势种群,优势种演替具有明显的季节与年际变化,细长翼根管藻(Rhizosolenia alataf.gracillima)是春季稳定的优势种,柔弱拟菱形藻(Pseudo-nitzschia delicatissma)是夏季稳定的优势种,春末甲藻的优势度增加明显。浮游植物群落多样性指数呈逐年下降趋势,均匀度呈逐年上升态势。浮游植物的异常增殖及过度集中导致多样性较低,种间比例不均匀,群落结构单一。赤潮季节性发生频繁,发生频率及引发种类呈上升趋势,海洋环境脆弱。  相似文献   

11.
Nematode species composition, trophic structure and body size distributions were followed over an annual production cycle in the central North Sea; to test responses to temporally changing food quality and quantity in the sediment. Changes in the phytoplankton concentration in the water column were quantitatively reflected in the concentration of chlorophyll a and breakdown products in the sediment, with higher concentrations in spring and autumn following blooms, and lower concentrations in summer and winter. The taxonomic and trophic structure of nematode communities differed significantly among stations over relatively short distances, potentially masking some of the temporal dynamics. Spatio-temporal differences in nematode species composition were linked to changes in the quality and quantity of organic material reaching the seabed, reflecting a species-specific response to the nutritional quality of sedimenting organic material and the biochemical changes in the sediment associated with its decomposition. The size distributions of selected nematode species indicated that most species bred continuously throughout the sampling period, although one species, the epigrowth feeder Spilophorella paradoxa, had periods of increased growth following the deposition of the spring phytoplankton bloom. There was no consistent temporal relationship between the trophic composition of nematode communities and spring chlorophyll a or carbon sedimentation, most likely a result of the trophic plasticity of most feeding types and the capacity of the community to use both freshly sedimented material as well as the subsequent breakdown products and refractory organic matter. Community metrics implied that there were small responses to the seasonal production cycle, but these belied strong responses of a few species with life histories that allowed them to track the availability of suitable food resources.  相似文献   

12.
An investigation of surface phytoplankton communities was undertaken on the shelf of the northern Benguela upwelling ecosystem during austral autumn (May) and spring (September), along latitudinal transects at 20° S and 23° S, from 2 to 70 nautical miles offshore, as well as on a zigzag grid located between these transects. Microscopic identification of the phytoplankton and CHEMTAX analysis of pigment biomarkers were used to characterise the community composition. During May 2014, warmer, more-saline water with a shallower upper mixed layer corresponding to periods of less-intense offshore Ekman transport was encountered on the shelf. Satellite imagery indicated high phytoplankton biomass extending for a considerable distance from the coast, and CHEMTAX indicated diatoms as dominant at most of the stations (52–92%), although dinoflagellates were dominant at some inshore localities (57–74%). Species of Chaetoceros, Bacteriastrum and Cylindrotheca were the most abundant, with abundance of the Pseudo-nitzschiaseriata-group’ being particularly high at a number of stations. In September 2014, more-intense wind-forcing resulted in a deeper upper mixed layer and stronger upwelling of colder, less-saline water. Elevated phytoplankton biomass was confined close to the coast, where diatoms accounted for most of the population (54–87%), whereas small flagellates, such as prasinophytes, haptophytes and cryptophytes, as well as the cyanobacterium Synechococcus, dominated the communities (58–90%) farther from the coast. It is hypothesised that stronger upwelling and deeper vertical mixing in September of that year were not conducive for widespread diatom growth, and that small flagellates populated the water column by being entrained from offshore onto the shelf in the upwelled water that moved in towards the coast.  相似文献   

13.
Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.  相似文献   

14.
胶州湾北部水域浮游植物研究Ⅰ——种类组成和数量变化   总被引:2,自引:1,他引:2  
根据 1995年 3月至 1996年 1月胶州湾北部水域调查资料 ,对调查区浮游植物种类组成、细胞数量、优势种组成和季节变化进行了分析研究 ,并与历史资料进行了比较。结果表明 ,浮游植物主要由硅、甲藻组成 ,其中硅藻在细胞数量和种类上都占优势 ;浮游植物细胞数量平面分布的总趋势依月份而异 ;季节变化属双周期类型 :高峰期出现在 1月和 9月 ,低谷期出现于 5月和 11月 ;与历史资料不同的是 ,网采浮游植物的种类和细胞数量都呈现出不同程度的下降趋势。  相似文献   

15.
黑潮入侵深刻影响东海生态环境,但对其如何影响浮游植物群落组成与分布仍知之甚少。为此,于2011年四季对东海(26°~33°N,121°~128°E)共164个站位进行浮游植物拖网采集和环境因子测定,分析了浮游植物丰度和优势种组成及其对黑潮入侵的响应。调查共检出浮游植物9门509种(含变种、变型和未定种),其中硅藻305种、甲藻154种,蓝藻、定鞭藻、金藻、裸藻、绿藻、隐藻和黄藻种类数较少。秋季浮游植物细胞丰度最高(30 496.91×103 cells/m3),高值区位于黑潮与长江冲淡水交汇形成的锋面处;夏季次之(28 911.28×103 cells/m3),高值区分布与秋季相似;春季较少(19 180.76×103 cells/m3),高值区位于舟山群岛东南部;冬季最低(472.36×103 cells/m3),高值区位于东海南部。冬季受黑潮表层水入侵影响,主要优势种为铁氏束毛藻(Trichodesmium thiebautii);春、夏季主要优势种为骨条藻(Skeleto...  相似文献   

16.
To better understand the spatial-temporal variation in phytoplankton community structure and its controlling factors in Jiaozhou Bay, Qingdao, North China, four seasonal sampling were carried out in 2017. The phytoplankton community structure and various environmental parameters were examined. The phytoplankton community in the bay was composed of mainly diatoms and dinofl agellates, and several other species of Chrysophyta were also observed. Diatoms were the most dominant phytoplankton group throughout the year, except in spring and winter, when Noctiluca scintillans was co-dominant. High Si/N ratios in summer and fall refl ect the high dominance of diatoms in the two seasons. Temporally, the phytoplankton cell abundance peaked in summer, due mainly to the high temperatures and nutrient concentrations in summer. Spatially, the phytoplankton cell abundance was higher in the northern part of the bay than in the other parts of the bay in four seasons. The diatom cell abundances show signifi cant positive correlations with the nutrient concentrations, while the dinofl agellate cell abundances show no correlation or a negative correlation with the nutrient concentrations but a signifi cant positive correlation with the stratifi cation index. This discrepancy was mainly due to the diff erent survival strategies between diatoms and dinofl agellates. The Shannon-Wiener diversity index ( H′) values in the bay ranged from 0.08 to 4.18, which fell in the range reported in historical studies. The distribution pattern of H′ values was quite diff erent from that of chlorophyll a , indicating that the phytoplankton community structure might have high biomass with a low diversity index. Compared with historical studies, we believe that the dominant phytoplankton species have been changed in recent years due mainly to the changing environment in the Jiaozhou Bay in recent 30 years.  相似文献   

17.
作者基于2011年9月(丰水期)和2012年1月(枯水期)粤西近岸30米以浅海域的调查资料,分析该海域浮游植物的种类组成、优势种、丰度及其群落结构多样性。结果表明,调查海域共鉴定浮游植物4门41属116种,硅藻为最主要优势类群。丰水期与枯水期共有种类40种,物种相似性指数为34.48%,表明2个调查季节种类组成变化较大,存在明显的季节性差异。枯水期优势种仅1种,为金藻门(Chrysophyta)的球形棕囊藻(Phaeoecystis globosa),优势度高达0.496;丰水期优势种有4种,其中以硅藻门的旋链角毛藻(Chaetoceros curvisetus)优势度较高(0.249)。浮游植物丰度表现出时间和空间异质性,丰度总体呈现近岸站位高于离岸站位,此外,丰水期浮游植物丰度湛江沿岸站位高于其他调查站位,枯水期浮游植物丰度则由西南部向东北部递减,总体而言,枯水期浮游植物丰度比丰水期高。群落结构多样性为枯水期西南部海域明显低于东北部海域,丰水期站位间多样性无明显变化规律,相比之下,丰水期群落物种多样性水平相对较高。相关分析表明:浮游植物丰度与p H、悬浮物呈正相关,与丰水期水温和枯水期盐度呈负相关。  相似文献   

18.
The phytoplankton distribution and composition in Lisbon bay was studied, at a short time scale based on a weekly sampling, during one year (April 2004 – May 2005), using microscopic examination and pigment analysis with high-performance liquid chromatography (HPLC). This work is a contribution to the knowledge on species succession and ecology of coastal communities. The frequency of the sampling permitted monitoring peak blooming and decaying, a process which frequently occurred within 1 –2 weeks.  相似文献   

19.
于2015—2016年春(5月)、夏(8月)、秋(11月)和冬(1月)四个航次对三门湾18个站位进行拖网采集和理化因子测定,分析了三门湾浮游植物群落结构、优势种组成、时空分布和主要影响因素,并结合历史数据,分析了浮游植物群落结构的变化规律,探讨了其主要驱动因子。调查共检出浮游植物8门87属199种(含变种、变型和未定名种),其中硅藻51属149种,甲藻18属27种,绿藻、裸藻、隐藻、定鞭藻、金藻和蓝藻偶有检出。四季共检出优势种8属13种,其中琼氏圆筛藻(Coscinodiscus jonesianus)为全年优势种。浮游植物年均丰度为1632.04×10~4cell/m~3,其中春季最低(53.06×10~4cell/m~3),夏季最高(5548.91×10~4cell/m~3)。聚类和相似性分析结果表明,浮游植物群落季节变化和区域差异明显。典范对应分析表明,影响三门湾海域浮游植物群落的主要因子依次为温度、盐度、DIN和DSi。结合历史资料发现,三门湾浮游植物群落丰度总体呈增加趋势(排除20世纪80年代冬季赤潮影响),主要种类组成仍以硅、甲藻为主,赤潮藻及嗜氮性硅藻种类数及优势度均上升。此外,三门湾浮游植物由大型硅藻向链状硅藻演替。海域富营养化和水温上升可能是主要驱动因子。  相似文献   

20.
《Journal of Sea Research》2000,43(2):121-133
In community monitoring an attempt is made to identify long-term trends by regular sampling of selected sites. Since the benthos is reputed to be fairly sedentary, the spatial resolution is often reduced to single sites. However, members of many benthic invertebrate species have been found drifting across sedimentary seabeds in shallow waters. Transportation by currents may result in changes of their spatial pattern in the sediment, thereby changing local community composition. The quantitative importance of drifting was tested by repeated sampling of a 2-km2 shallow (10 m) offshore area west of the island of Sylt (North Sea). Within the fortnight period between two samplings the benthic community composition had changed dramatically. Despite fairly calm weather, translocation of organisms by currents exceeded 1 km. In about half of the species, the spatial changes in abundance within these two weeks roughly equalled the average variation between consecutive years. This example suggests that community monitoring needs a wide spatial scale to discriminate long-term temporal changes from short-term variability. Extending the sampling area from 2 to 180 km2 strongly reduced the variability of abundance estimates. However, only in a few species was the spatial distribution over the sampling sites found on one sampling date a suitable estimator for the spatial pattern found one or two months later, at the same sites. Instead the spatial patterns of the fauna changed strongly during a single month with a spatial scale of re-distribution exceeding several km in some species. At the same time the granulometric sediment composition changed, indicating changes of habitat quality. Hence, sampling of a large area, with random selection of the sampling sites on each sampling date, is suggested to yield the most reliable estimates of population development in the coastal North Sea. However, in view of the expected spatial scale of re-distribution during storm tides and the spatial variability of recruitment, even a 180-km2 sampling area may be too small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号