首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The temporal variability in currents, temperature, and particulate matter concentration were measured in the Mississippi Canyon axis where the thalweg was 300 m deep from May–July and August–November 1998 using current meters, thermographs, a light-scattering sensor, and sediment traps. Canyon sediments were sampled by coring and observed using an ROV video camera. Currents in the upper Mississippi Canyon generally oscillated up/down canyon with diurnal periodicity and were bottom-intensified. Mean current speed at 3.5 mab was approximately 8 cm s?1 during both deployments, reaching maximum speeds of over 50 cm s?1 under normal conditions. Based on current velocities, critical bed shear stress for resuspension of canyon-floor sediments was exceeded about 30% of the time during both deployments. In late September, Hurricane Georges passed 150 km NE of the study site, significantly intensifying current velocities, bed shear stress, resuspension, trap fluxes and temperature fluctuations. As the hurricane passed, maximum current speed reached 68 cm?s and temperature decreased ~7 °C in less than two hours. Critical bed shear stress for sediment resuspension was exceeded approximately 50% of the time during the five days of hurricane influence. Further evidence for sediment resuspension was the five-fold (and perhaps 70–130 fold) increase in trap fluxes and compositional similarities between canyon surface sediment and material collected by traps.  相似文献   

2.
Three shallow basins in Huizhou West Lake, China, were compared with respect to phosphorus (P) cycling between sediment and water, binding forms of P in sediment, and macrophyte biomass. The basins had similar sediments and similar depths, but two of the basins were restored by carp fish removal and macrophyte transplantation. These two basins have had clear water, low Chl.a and high macrophyte coverage for seven and ten years, whilst the unrestored control basin had turbid water and higher Chl.a. Judged by diffusive ammonium efflux, sediments in restored basins had higher mineralization rates than the unrestored basin, but the release of total dissolved P were more similar. However, sediments of restored basins released primarily dissolved organic P, while the sediment from the unrestored basin only released dissolved inorganic P. One third of the P release in the unrestored basin occurred from resuspended sediment, while this pathway contributed less than 3% in restored basins where resuspension rates were 10 times lower and the surface sediments affinity for phosphate higher. Besides from the presence of carps in the unrestored basin, the main differences were a large pool of P (700–850 mg P m−2) in macrophyte biomass and a smaller pool (∼150 mg m−2) as loosely adsorbed P in the sediment of restored basins than in the unrestored (0 in macrophytes and 350 mg P m−2 as loosely adsorbed). Also, a tendency of higher concentrations of oxidized iron was observed in the surface sediment from restored basins. The study underlines the potential of trophic structure changes to alter internal nutrient cycling in shallow lakes.  相似文献   

3.
《Continental Shelf Research》2007,27(3-4):542-559
Flood deposition and storm reworking of sediments on the inner shelf can change the mixture of grain sizes on the seabed and thus its porosity, bulk density, bulk compressional velocity and reflectivity. Whether these changes are significant enough to be detectable by repeat sub-bottom sonar surveys, however, is uncertain. Here the question is addressed through numerical modeling. Episodic flooding of a large versus small river over the course of a century are modeled with HYDROTREND using the drainage basin characteristics of the Po and Pescara Rivers (respectively). A similarly long stochastic record of storms offshore of both rivers is simulated from the statistics of a long-term mooring recording of waves in the western Adriatic Sea. These time series are then input to the stratigraphic model SEDFLUX2D, which simulates flood deposition and storm reworking on the inner shelf beyond the river mouths. Finally, annual changes in seabed reflectivity across these shelf regions are computed from bulk densities output by SEDFLUX2D and compressional sound speeds computed from mean seafloor grain size using the analytical model of Buckingham [1997. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. Journal of the Acoustical Society of America 102, 2579–2596; 1998. Theory of compressional and shear waves in fluidlike marine sediments. Journal of the Acoustical Society of America 103, 288–299; 2000. Wave propagation, stress relaxation, and grain-tograin shearing in saturated, unconsolidated marine sediments. Journal of the Acoustical Society of America 108, 2796–2815]. The modeling predicts reflectivities that change from <12 dB for sands on the innermost shelf to >9 dB for muds farther offshore, values that agree with reflectivity measurements for these sediment types. On local scales of ∼100 m, however, maximum changes in reflectivity are <0.5 dB. So are most annual changes in reflectivity over all water depths modeled (i.e., 0–35 m). Given that signal differences need to be ⩾2–3 dB to be resolved, the results suggest that grain-size induced changes in reflectivity caused by floods and storms will rarely be detectable by most current sub-bottom sonars.  相似文献   

4.
《Continental Shelf Research》2007,27(3-4):489-505
Sediment accumulation over the past century on the continental shelf near the Po delta varies with distance from the most active distributary channels. Near the Pila and Goro distributaries, sediment accumulation is rapid (1–4 cm yr−1) and occurs in pulses. In these areas, the seabed is dominated by physical sedimentary structures that can be related to flood sedimentation. Between the two distributaries and in the southern portion of the dispersal system, sediment accumulation is slower (rates reach a minimum of 0.23 cm yr−1 at ∼50 km from the Pila mouth) and steady-state, reflecting more continuous dispersal of sediment during non-flood periods. Sedimentary strata in these locations are composed of finer (clayey silt), mottled sediment. The similarity in the spatial distribution of long-term (100-yr) sediment accumulation to deposition resulting from the 2000 flood event suggests that the Po shelf is flood-dominated.About half of the sediment delivered by the Po River on a 100-yr time scale can be accounted for in the seabed deposit within ∼50 km of the Pila mouth. The remaining sediment is likely transported southward by the prevailing circulation, and this sediment coalesces with inputs from the Apennine Rivers.  相似文献   

5.
《Continental Shelf Research》2006,26(17-18):2050-2072
A 5-yr data set of near-bed current and suspended-sediment concentration measured within 2 m of the seabed in 60-m water depth has been analyzed to evaluate the interannual variability of physical processes and sediment transport events on the Eel River continental shelf, northern California. This data set encompasses a wide range of shelf conditions with winter events characterized as: Major Flood (1996/97), strong El Niño (1997/98), strong La Niña (1998/99), and Major Storm (1999/00). Data were collected at a site located 25 km north of the Eel River mouth, on the landward edge of the mid-shelf mud deposit. During the winter months sediment resuspension is forced primarily by near-bed oscillatory flows, and sediment transport occurs both as suspended load and as gravity-driven (fluid-mud) flows. Winter conditions that caused periods of increased sediment transport existed on average for 142 d yr−1 over the total record, ranging between 89 d in the Major Flood year (1996/97) and 171 d in the La Niña year (1998/99). Hourly averaged values of significant wave height varied between 0.5 and 10.7 m and hourly averaged values of near-bed orbital velocities ranged between 0 and 125 cm s−1. During the five winters, sediment threshold conditions were exceeded an average of 35% of the time, ranging from 19% in the Major Flood year (1996/97) to 52% in the La Niña year (1998/99). Mean concentration of suspended sediment, measured at 30 cmab, ranged from values close to 0–8 g l−1. Among winters, major sediment flux events exhibited different patterns due to varying combinations of physical processes including river floods, waves, and shelf circulation. Within winters, the major period of sediment flux varied from a 3-d fluid mud event (Major Flood winter) to a 50-d period of persistent southerlies (El Niño winter) and a winter of continuous storm cycles (La Niña winter). Winter-averaged suspended-sediment concentration appeared to vary in response to river discharge, while total sediment flux responded to storm intensity. The net sediment flux appeared to depend on timing of river discharge and shelf conditions. On the Eel River shelf, the mid-shelf mud deposit apparently is not emplaced by deposition from the river plume, but by secondary processes from the inner shelf including off-shelf transport of sediment suspensions and gravity-driven fluid-mud flows. Thus, these inner-shelf processes redistribute sediment supplied by the Eel River (a point source) making the inner shelf a line source of sediment that forms and nourishes the mid-shelf deposit. Large-scale shelf circulation patterns and interannual variability of the physical forcing are also important in determining the locus of the mid-shelf deposit, and both are influenced by climate variations. Post-depositional alteration of the deposit also depends on the subsequent shelf conditions following major floods.  相似文献   

6.
A 2-year investigation into shoreface morphodynamic behaviour off a high-energy headland-embayment coast in Northern Ireland reveals important process–response mechanisms that cannot be explained solely by existing conceptual models. Fourteen sequential bathymetric surveys, conducted every 1–2 months, show that morphologic (seabed) change is not directly related to oceanographic forcing—extensive nearshore and shoreface accretion and erosion occurs under fair-weather, modal and high-energy conditions. The main factors which seem to cause significant change are long-duration (swell) events coupled with onshore winds, availability of (recently) introduced sediment, surges and elapsed time between storms and the next scheduled survey. Several high-energy events over a short time period (<30 days) did not result in extensive seafloor changes, contrary to expectations. Net seabed change over 2 years shows an average to 0.6 m m?2 of shoreface accretion from the nearshore to 24 m depth. Net erosion was not observed anywhere, including the subaerial beach. Geologic evidence strongly suggests that the source of the significant volume (7.7×105 m3) of sediment introduced into the study area must have been derived from the lower shoreface and/or inner shelf, beyond 24 m depth.  相似文献   

7.
《Marine pollution bulletin》2009,58(6-12):349-356
This study examined the phosphorus retention and release characteristics of sediments in the eutrophic Mai Po Marshes in Hong Kong. Results of chemical fractionation show that the sum of inorganic P pools exceeded 50% of the total sediment P content, with the redox-sensitive iron-bound P (Fe(OOH)  P) being the dominant P fraction. Given the considerable average Fe(OOH)  P concentration of 912 μg g−1, Mai Po sediments demonstrated a great potential to release bioavailable P under low sediment redox potentials. This was further supported by the high mean anaerobic P flux of 31.8 mg m−2 d−1 recorded in Mai Po sediment cores, indicating the role of bottom sediments as a net P source. Although sediments in Mai Po had appreciable Langmuir adsorption maxima (1642–3582 mg kg−1), the high zero equilibrium P concentrations (0.02–0.51 mg L−1) obtained suggest that sediment sorption processes would contribute to sustaining the eutrophic conditions in overlying water column even with a further reduction in external P load. Concerted efforts should be made to reduce internal loading of P, especially under reducing conditions, to complement the implementation of zero discharge policy for Deep Bay for effective eutrophication abatement and long-term water quality improvement in the Mai Po Marshes.  相似文献   

8.
《Continental Shelf Research》2006,26(17-18):2125-2140
Sediment delivered to coastal systems by rivers (15×109 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×108 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment.Three types of 210Pb profiles were observed from short cores (15–45 cm) collected on the shelf. Proximal to Southwest Pass in 30–100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr−1 (>1.8 g cm−2 yr−1). Kasten cores (∼200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr−1; >3 g cm−2 yr−1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ∼10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr−1 (<0.5 g cm−2 yr−1). A preliminary sediment budget based on the distribution of 210Pb accumulation rates indicates that 40–50% of the sediment delivered by the river is transported out of the study region. Sediment is moved to distal regions of the shelf/slope through two different mechanisms. Along-isobath sediment movement occurs by normal resuspension processes west of the delta, whereas delivery of sediments south and southwest of the delta may be also be influenced by mass movement events on varying timescales.  相似文献   

9.
A large sediment deposit known as the Meiji Drift, located in the northwestern Pacific Ocean, is thought to have formed from deep water exiting the Bering Sea, although no notable deep water forms there presently. We determine the terrigenous sources since 140 ka to the drift using bulk sediment 40Ar–39Ar and Nd isotopic analyses on the silt-sized (20–63 μm) terrigenous fraction from Ocean Drilling Program (ODP) Site 884 to reconstruct paleo-circulation patterns. There are large changes in both isotopic tracers, varying on glacial–interglacial cycles. During glacial intervals, bulk sediment 40Ar–39Ar ages range between 40 and 80 Ma, while Nd isotopic values range from εNd = ? 1 to + 2. During interglacial intervals, sediments become much younger and more radiogenic, with bulk sediment ages falling to 2–15 Ma and Nd isotopic values ranging between εNd = + 5 and + 9. These data and quantitative comparison to potential source rocks indicate that the young Kamchatkan and Aleutian Arcs, lying NW and NE of the Meiji Drift, contribute the majority of sediment during interglacials. Conversely, older source rocks, such as those drained by the Yukon River and northeast Russia are the dominant origin of sediments during glacials. Mixing model calculations suggest that as much as 35–45% of the sediment deposited in the Meiji Drift during glacials is from the Bering Sea. It remains unclear whether thermohaline-type circulation or focussing of Bering Sea flow lead to the glacial–interglacial sediment source changes observed here.  相似文献   

10.
As a part of the ANR-Forclim experiment, particle mass fluxes and sedimentation processes were investigated on the slope of Aquitanian margin of the Bay of Biscay, between the canyons of Cap-Breton and Cap-Ferret. Interface sediments were collected along a depth transect from 145 to 2000 m; simultaneously a mooring line was deployed at the deepest station (WH, 2000 m) with two traps (800 and 1700 m) for a 16-month period (June 2006–November 2007). 210Pb activities of settling particles and of interface sediments were determined to study transport processes of particles. Sediment and mass accumulation rates, calculated from excess 210Pb profiles in the sediment column, show the expected decreasing trend with depth, as usually observed on margins. Mean particulate mass fluxes at 800 and 1700-m depth at site WH are, respectively, 27 and 70 g m?2 a?1.The 210Pb budget points out events of temporary high lateral input of particles. The comparison of mass and 210Pb fluxes between the water column and the seabed indicates that lateral transport plays an important role in particle accumulation on the Aquitanian margin. Regarding the objectives of the ANR-Forclim program, which aims to improve significantly the interpretation of fossil foraminifera signals, as a proxy for hydrological changes in the North Atlantic ocean, these results highlight advection processes must be considered when interpreting fluxes of foraminifers on the Aquitanian margin.  相似文献   

11.
Contamination with As, Cd and Hg, their spatial and temporal distribution are reported from the coastal wetland sediments of the northern Beibu Gulf, South China Sea. The content of As, Cd, Hg and TOC in surface sediments is 8.1 ± 5.8 μg g?1, 0.08 ± 0.14 μg g?1, 0.034 ± 0.028 μg g?1 and 0.45 ± 0.39%, respectively. The mean sedimentation rates are 0.93–1.37 cm year?1 during 1920s to 2008 determined by 210Pb and 137Cs dating in three cores. The vertical profiles of As, Cd and Hg content in the cores retrieved from Qin and Nanliu River estuaries show increasing trends during 1985–2008 due to anthropogenic impact caused by local economic development. Locally the surface sediments have potential ecological risk of As to benthos according to the NOAA sediment quality guidelines.  相似文献   

12.
《Continental Shelf Research》2006,26(17-18):2178-2204
Continental-shelf lithofacies are described from a series of cores collected in the northern Gulf of Alaska, a high-energy paraglacial shelf experiencing rapid rates of sediment accumulation. Short-lived tracers (234Th and chlorophyll-a) indicate that during the annual peak in fluvial sediment input (summer), biologic sediment mixing coefficients in the surficial seabed are generally lower than other coastal environments (<20 cm2 yr−1) and mixing extends downward <10 cm.210Pb geochronology indicates that sediment accumulation rates (time scales of 10–100 yr) are 0.1–3 cm yr−1. The measured bioturbation and accumulation rates lead to predictions of moderate to bioturbated lithofacies, as observed. Primary depositional fabric is preferentially preserved where sediment accumulation rates >2 cm yr−1 and non-steady sediment deposition occurs. Depositional fabric is also observed in strata at 50–100 m water depths and is similar in appearance to beds that may form through deposition of wave-induced fluid-mud flows, which have been observed forming on other shelves with moderate to high wave energy. Five general lithofacies can be identified for the study area: inner-shelf sand facies, interbedded sandy mud facies, moderate-to-well-bioturbated mud facies, gravelly mud facies, and Tertiary bedrock facies. The moderate-to-well-bioturbated mud facies is areally dominant, representing over 50% of the shelf area, although roughly equal volumes (∼0.4 km3) of strata with some preservation of primary fabric are annually accumulating. Lithofacies on this paraglacial shelf generally resemble mid- and low-latitude allochthonous shelf strata to a much greater degree than Holocene glacimarine strata formed on shelves dominated by icebergs and floating ice shelves. Paraglacial strata may be differentiated from non-glacial shelf strata by lower organic carbon concentrations, a relatively lower degree of bioturbation, and increased preservation of primary depositional fabric.  相似文献   

13.
《Marine pollution bulletin》2012,64(5-12):523-527
Concentrations of trace metals (Zn, Cr, Cu, V, Cd and Pb), total organic carbon (TOC), black carbon (BC) and their granulometry were examined in 25 surface sediment samples from the northern Bering Sea, Chukchi Sea and adjacent areas. Trace metal concentrations in the sediments varied from 21.06–168.21 mg kg−1 for Zn, 8.91–46.94 mg kg−1 for Cr, 2.69–49.39 mg kg−1 for Cu, 32.46–185.54 mg kg−1 for V, 0.09–0.92 mg kg−1 for Cd, and 0.95–15.25 mg kg−1 for Pb. The geoaccumulation index (Igeo) indicated that trace metal contamination (Zn and Cd) existed in some stations of the study area. The distribution of grain size plays an important role in influencing the distribution of trace metals (Zn, Cr, Cu, V, and Pb) in sediments from the Chukchi Sea and adjacent areas.  相似文献   

14.
《Marine pollution bulletin》2012,64(5-12):528-534
The Salt-water River watershed is one of the major river watersheds in the Kaohsiung City, Taiwan. Water quality and sediment investigation results show that the river water contained high concentrations of organics and ammonia–nitrogen, and sediments contained high concentrations of heavy metals and organic contaminants. The main pollution sources were municipal and industrial wastewaters. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments can be characterized as heavily polluted in regard to Cd, Cr, Pb, Zn, and Cu. The water quality analysis simulation program (WASP) model was applied for water quality evaluation and carrying capacity calculation. Modeling results show that the daily pollutant inputs were much higher than the calculated carrying capacity (1050 kg day−1 for biochemical oxygen demand and 420 kg day−1 for ammonia–nitrogen). The proposed watershed management strategies included river water dilution, intercepting sewer system construction and sediment dredging.  相似文献   

15.
《Marine pollution bulletin》2014,78(1-2):224-229
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the sediment from the Hormuz strait, Persian Gulf. The sum of 16 PAHs (ΣPAH) concentrations varied from 72.17 to 277.77 ng g−1 dry weight, with an average value of 131.20 ± 59.29 ng g−1 dry weight. An ecological risk assessment of PAHs, indicated that adverse biological effects caused by acenaphthene and acenaphthylene occasionally may take place in the sediment of Hormuz strait. PAH source identification showed that the PAHs in the sediments come from pyrogenic and mixed origin. Based on classification of pollution levels, sediments from Hormuz strait could be considered as low to moderately polluted with PAHs.  相似文献   

16.
In the present study, the uppermost 3 cm of muddy, seabed sediment was collected from a deep-sea sediment core, drilled from a water depth of 4 km, near the deepest site of the Mediterranean Sea, outside Pylos, Greece. The core was divided into 7 layer samples, each 3–4 mm thick, in order to get an independent age assessment for each one using luminescence dating; from polymineral coarse grains in the range 30–60 μm. Between 11 and 22 aliquots were measured for each sample using the optically stimulated luminescence, single-aliquot regenerative-dose analysis. The estimated mean equivalent dose values had an uncertainty less than 3% and resulted in optical ages ranging from 3.5 to approximately 5 ka, with uncertainties lying between 5.5 and 7.4%. Multiple-aliquot, thermoluminescence-based, additive-dose, total bleaching approach provided equivalent doses with typical errors of 10–15% and ages in the range of 3.6 and 9.4 ka, with uncertainties up to 17%. Single-aliquot optical ages are shown to be relatively successful, due to their consistency with AMS 14C radiocarbon ages, obtained from Planktonic foraminifera from the same core. Luminescence dates for the topmost 1.5 cm indicate a substantial mix and post burial disturbance of the surface sediment. Below the topmost 1.5 cm, both luminescent approaches indicate ages which increase smoothly with depth. The concordant OSL and TL age estimates for the sample O5, in conjunction with specific luminescence properties and its major-element geochemical chemistry content, suggest that it was heated during the Santorini volcanic eruption. Deposition rates of 8.6–18.9 cm over 10 ka below the sample O5, provided by optical ages, exhibit an excellent level of agreement with the accumulation rate of 7–18 cm over 10 ka at the sea bottom, already reported for the site under study.  相似文献   

17.
The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences.The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka?1, while the lowest values (0.34–0.60 m ka?1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34–0.90 m ka?1) were estimated for the period 146–18 ka BP (oxygen isotopic stages 6–2) and higher (1.46–1.88 m ka?1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10–8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka.During the isotopic stages 8, 10, 11 and 12, almost the 50–60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.  相似文献   

18.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

19.
《Continental Shelf Research》2007,27(3-4):338-358
Thirty-three surface sediment samples from cross-shelf transects on the northern Adriatic shelf were collected in December 2000, soon after a 100-yr flood of the Po River, in order to determine the distribution of organic carbon (OC) along the main sediment dispersal system. To evaluate the temporal variability, stations were re-occupied eight times at seasonal intervals until June 2003. Downcore sediment profiles from two sites characterized by high flood deposit thicknesses were also examined to assess the OC variability within the flood layer. In December 2000, the highest contents of OC (up to 1.24 wt%) were measured in front of the main distributary mouths (Pila, Tolle and Gnocca-Goro) where the greatest thicknesses of the flood deposit were recorded. However, the influence of the Po di Gnocca-Goro sediment supply on the OC surface distribution declined after ∼1.5 years from the fall-2000 river flood, probably because these mouths are less active when the water discharge is lower. The δ13C of organic matter was used to trace the dispersal of fluvial OC on the continental shelf. The δ13C values ranged from −25.9‰ to −23.1‰. The fraction of fluvially derived organic particles decreased with increasing water depth according to a radial dispersal pattern around the Po River delta. This pattern persisted in all cruises. δ13C values increased progressively until April 2002, suggesting an increasing marine contribution to the OC content but decreased again following a second minor flood event in November 2002. The molar C/N ratio was on average 10.0±1.6, with slightly lower values in southern and central areas.Assuming contributions from three OC end-members (terrestrial, riverine and marine), a mixing model based on δ13C and the ratio of N to C (statistically more robust than C/N; Goñi, M.A., Teixeir, M.J., Perkley, D.W., 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science 57, 1023–1048) was applied in order to quantitatively assess the OC sources for Po shelf sediments. δ13C is significantly and positively correlated with the marine OC fraction. The terrestrial fraction is inversely correlated with N/C, while the riverine fraction is positively correlated with N/C. The terrestrial OC source was the most abundant end-member (>70%) showing only little temporal variability regardless of the Po River water discharge. Temporal and spatial changes in OC composition suggest that: (a) the Po River prodelta is always dominated from terrestrial OC input; (b) the Po della Pila supplies most terrestrial OC, whilst other tributaries (e.g., Po di Gnocca-Goro) are secondary sources. However, these mouths are as important as the Po della Pila in affecting the riverine OC signature; (c) offshore, biological primary production raises the marine OC contribution.At two sites on the Po River prodelta, the 2000-flood deposit shows slight but consistent compositional changes of organic matter (N/C and δ13C) which can help to recognize other flood events in the sedimentary record. The OC budget for the 2000-flood deposit accounts for a terrestrial+riverine OC supply of 68–162 Gg (109 g) against an OC deposition of 106–162 Gg (excluding the marine fraction), which implies a rapid and efficient sedimentation of the flood material, and scarce or negligible export out the study area. Flood events may thus enhance terrestrial carbon burial, whereas marine carbon arrives more slowly and may be largely mineralized at the sediment–water interface.  相似文献   

20.
《Continental Shelf Research》2007,27(3-4):475-488
Across a limited depth range (5–10 m) on many continental shelves, the dominant sediment size changes from sand to mud. This important boundary, called the sand–mud transition (SMT), separates distinct benthic habitats, causes a significant change in acoustic backscatter, represents a key facies change, and delimits more surface-reactive mud from less surface-reactive sand. With the goal of improving dynamical understanding of the SMT, surficial sediments were characterized across two SMTs on the Adriatic continental shelf of Italy. Geometric mean diameter, specific surface area (SSA), mud fraction (<63 μm) and heavy metal concentrations were all measured. The SMT related to the Tronto River is identified between 15 and 20 m water depth while the SMT associated with the Pescara River varies between 15 and 25 m water depth. The sediment properties correlate with a new, process-based sedimentological parameter that quantifies the fraction of the sediment in the seabed that was delivered as flocs. These correlations suggest that floc dynamics exert strong influence over sediment textural properties and metal concentrations. Relative constancy in the depth of the SMT along this portion of the margin and its lack of evolution over a period during which sediment input to the margin has dramatically decreased suggest that on the Adriatic continental shelf energy is the dominant control on the depth of the SMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号