首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Continental Shelf Research》2007,27(3-4):489-505
Sediment accumulation over the past century on the continental shelf near the Po delta varies with distance from the most active distributary channels. Near the Pila and Goro distributaries, sediment accumulation is rapid (1–4 cm yr−1) and occurs in pulses. In these areas, the seabed is dominated by physical sedimentary structures that can be related to flood sedimentation. Between the two distributaries and in the southern portion of the dispersal system, sediment accumulation is slower (rates reach a minimum of 0.23 cm yr−1 at ∼50 km from the Pila mouth) and steady-state, reflecting more continuous dispersal of sediment during non-flood periods. Sedimentary strata in these locations are composed of finer (clayey silt), mottled sediment. The similarity in the spatial distribution of long-term (100-yr) sediment accumulation to deposition resulting from the 2000 flood event suggests that the Po shelf is flood-dominated.About half of the sediment delivered by the Po River on a 100-yr time scale can be accounted for in the seabed deposit within ∼50 km of the Pila mouth. The remaining sediment is likely transported southward by the prevailing circulation, and this sediment coalesces with inputs from the Apennine Rivers.  相似文献   

2.
《Continental Shelf Research》2006,26(17-18):2050-2072
A 5-yr data set of near-bed current and suspended-sediment concentration measured within 2 m of the seabed in 60-m water depth has been analyzed to evaluate the interannual variability of physical processes and sediment transport events on the Eel River continental shelf, northern California. This data set encompasses a wide range of shelf conditions with winter events characterized as: Major Flood (1996/97), strong El Niño (1997/98), strong La Niña (1998/99), and Major Storm (1999/00). Data were collected at a site located 25 km north of the Eel River mouth, on the landward edge of the mid-shelf mud deposit. During the winter months sediment resuspension is forced primarily by near-bed oscillatory flows, and sediment transport occurs both as suspended load and as gravity-driven (fluid-mud) flows. Winter conditions that caused periods of increased sediment transport existed on average for 142 d yr−1 over the total record, ranging between 89 d in the Major Flood year (1996/97) and 171 d in the La Niña year (1998/99). Hourly averaged values of significant wave height varied between 0.5 and 10.7 m and hourly averaged values of near-bed orbital velocities ranged between 0 and 125 cm s−1. During the five winters, sediment threshold conditions were exceeded an average of 35% of the time, ranging from 19% in the Major Flood year (1996/97) to 52% in the La Niña year (1998/99). Mean concentration of suspended sediment, measured at 30 cmab, ranged from values close to 0–8 g l−1. Among winters, major sediment flux events exhibited different patterns due to varying combinations of physical processes including river floods, waves, and shelf circulation. Within winters, the major period of sediment flux varied from a 3-d fluid mud event (Major Flood winter) to a 50-d period of persistent southerlies (El Niño winter) and a winter of continuous storm cycles (La Niña winter). Winter-averaged suspended-sediment concentration appeared to vary in response to river discharge, while total sediment flux responded to storm intensity. The net sediment flux appeared to depend on timing of river discharge and shelf conditions. On the Eel River shelf, the mid-shelf mud deposit apparently is not emplaced by deposition from the river plume, but by secondary processes from the inner shelf including off-shelf transport of sediment suspensions and gravity-driven fluid-mud flows. Thus, these inner-shelf processes redistribute sediment supplied by the Eel River (a point source) making the inner shelf a line source of sediment that forms and nourishes the mid-shelf deposit. Large-scale shelf circulation patterns and interannual variability of the physical forcing are also important in determining the locus of the mid-shelf deposit, and both are influenced by climate variations. Post-depositional alteration of the deposit also depends on the subsequent shelf conditions following major floods.  相似文献   

3.
《Continental Shelf Research》2006,26(17-18):2125-2140
Sediment delivered to coastal systems by rivers (15×109 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×108 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment.Three types of 210Pb profiles were observed from short cores (15–45 cm) collected on the shelf. Proximal to Southwest Pass in 30–100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr−1 (>1.8 g cm−2 yr−1). Kasten cores (∼200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr−1; >3 g cm−2 yr−1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ∼10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr−1 (<0.5 g cm−2 yr−1). A preliminary sediment budget based on the distribution of 210Pb accumulation rates indicates that 40–50% of the sediment delivered by the river is transported out of the study region. Sediment is moved to distal regions of the shelf/slope through two different mechanisms. Along-isobath sediment movement occurs by normal resuspension processes west of the delta, whereas delivery of sediments south and southwest of the delta may be also be influenced by mass movement events on varying timescales.  相似文献   

4.
《Continental Shelf Research》2006,26(17-18):2225-2240
Stratigraphic completeness is a fundamental consideration when deciphering the mass accumulation history of sediments and the geologic record of earth and ocean processes. In this study, stratigraphic completeness was examined in the context of late Holocene sedimentary successions using published sediment accumulation rates for five ocean margin systems (Amazon shelf, Hudson estuary, northern California shelf, Mid-Atlantic slope, Santa Monica Bay). Plots of mass accumulation rate versus time span of averaging were used to determine how rates scale with measurement period, and to estimate levels of stratigraphic completeness for comparison within and among margin systems. Statistically significant inverse correlations between accumulation rate and time span of averaging are indicated for all but one of these systems—most of the sedimentary records examined are stratigraphically incomplete. At the 103-yr level of resolution, completeness is 20–48% for strongly tidal estuarine (Hudson estuary) and deltaic shelf (Amazon shelf) sites, 51–91% for accretionary shelves (northern California shelf) and slopes (Mid-Atlantic slope), and 85–100% for a sediment-starved slope (Santa Monica bay). Mass accumulation rates converge to a relatively narrow range (0.01–0.1 g cm−2 yr−1) at the 104-yr level of resolution, consistent with the notion that there are universal controls on sediment accumulation rate, i.e., rate of sea-level rise and sediment supply. Among sites on the Amazon and northern California shelves, within-system completeness varies by ∼10–20% on account of site-specific sedimentary processes that preferentially trap or disperse suspended sediment. Overall, stratigraphic completeness increases with water depth shelf-to-slope, yet depth is not a robust predictor of completeness in general owing to differences in strata-forming processes among shallow-marine environments. Significantly, completeness varies inversely with instantaneous deposition rate as the most sediment-rich systems tend to exhibit the most incomplete sedimentary records. The findings of this study emphasize the importance of considering time span and fidelity when interpreting the accumulation history of modern and Holocene sedimentary strata.  相似文献   

5.
《Continental Shelf Research》2006,26(17-18):2241-2259
The Amazon River spawns a vast mobile mudbelt extending ∼1600 km from the equator to the Orinoco delta. Deposits along the Amazon–Guianas coastline are characterized by some of the highest Corg remineralization rates reported for estuarine, deltaic, or shelf deposits, however, paradoxically, except where stabilized by mangroves or intertidal algal mats, they are usually suboxic and nonsulfidic. A combination of tides, wind-driven waves, and coastal currents forms massive fluid muds and mobile surface sediment layers ∼0.5–2 m thick which are dynamically refluxed and frequently reoxidized. Overall, the seabed functions as a periodically mixed batch reactor, efficiently remineralizing organic matter in a gigantic sedimentary incinerator of global importance. Amazon River material entering the head of this dynamic dispersal system carries an initial terrestrial sedimentary Corg loading of ∼ 0.7 mg C m−2 particle surface area. Total Corg loading is lowered to ∼ 0.2 mg C m−2 in the proximal delta topset, ∼60–70% of which remains of terrestrial origin. Loading decreases further to 0.12–0.14 mg C m−2 (∼60% terrestrial) in mudbanks ∼600 km downdrift along French Guiana, values comparable to those found in the oligotrophic deepsea. DOC/ΣCO2 ratios in pore waters of French Guiana mudbanks indicate that >90% of metabolized organic substrates are completely oxidized. Within the Amazon delta topset at the head of the dispersal system, both terrestrial and marine organic matter contribute substantially to early diagenetic remineralization, although reactive marine substrate dominates (∼60–70%). The conditional rate constant for terrestrial Corg in the delta topset is ∼0.2 a−1. As sedimentary Corg is depleted during transit, marine sources become virtually the exclusive substrate for remineralization except very near the mangrove shoreline. The δ13C and Δ14C values of pore water ΣCO2 in mudbanks demonstrate that the primary source of remineralized organic matter within ∼1 km of shore is a small quantity of bomb signature marine plankton (+80‰). Thus, fresh marine organic material is constantly entrained into mobile deposits and increasingly drives early diagenetic reactions along the transit path. Relatively refractory terrestrial Corg is lost more slowly but steadily during sedimentary refluxing and suboxic diagenesis. Amazon Fan deposits formed during low sea level stand largely bypassed this suboxic sedimentary incinerator and stored material with up to ∼3X the modern high stand inner shelf Corg load (Keil et al., 1997b. Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 155. pp. 531–537). Sedimentary dynamics, including frequency and magnitude of remobilization, and the nature of dispersal systems are clearly key controls on diagenetic processes, biogeochemical cycling, and global C storage along the continental margins.  相似文献   

6.
《Continental Shelf Research》2006,26(17-18):2178-2204
Continental-shelf lithofacies are described from a series of cores collected in the northern Gulf of Alaska, a high-energy paraglacial shelf experiencing rapid rates of sediment accumulation. Short-lived tracers (234Th and chlorophyll-a) indicate that during the annual peak in fluvial sediment input (summer), biologic sediment mixing coefficients in the surficial seabed are generally lower than other coastal environments (<20 cm2 yr−1) and mixing extends downward <10 cm.210Pb geochronology indicates that sediment accumulation rates (time scales of 10–100 yr) are 0.1–3 cm yr−1. The measured bioturbation and accumulation rates lead to predictions of moderate to bioturbated lithofacies, as observed. Primary depositional fabric is preferentially preserved where sediment accumulation rates >2 cm yr−1 and non-steady sediment deposition occurs. Depositional fabric is also observed in strata at 50–100 m water depths and is similar in appearance to beds that may form through deposition of wave-induced fluid-mud flows, which have been observed forming on other shelves with moderate to high wave energy. Five general lithofacies can be identified for the study area: inner-shelf sand facies, interbedded sandy mud facies, moderate-to-well-bioturbated mud facies, gravelly mud facies, and Tertiary bedrock facies. The moderate-to-well-bioturbated mud facies is areally dominant, representing over 50% of the shelf area, although roughly equal volumes (∼0.4 km3) of strata with some preservation of primary fabric are annually accumulating. Lithofacies on this paraglacial shelf generally resemble mid- and low-latitude allochthonous shelf strata to a much greater degree than Holocene glacimarine strata formed on shelves dominated by icebergs and floating ice shelves. Paraglacial strata may be differentiated from non-glacial shelf strata by lower organic carbon concentrations, a relatively lower degree of bioturbation, and increased preservation of primary depositional fabric.  相似文献   

7.
As a part of the ANR-Forclim experiment, particle mass fluxes and sedimentation processes were investigated on the slope of Aquitanian margin of the Bay of Biscay, between the canyons of Cap-Breton and Cap-Ferret. Interface sediments were collected along a depth transect from 145 to 2000 m; simultaneously a mooring line was deployed at the deepest station (WH, 2000 m) with two traps (800 and 1700 m) for a 16-month period (June 2006–November 2007). 210Pb activities of settling particles and of interface sediments were determined to study transport processes of particles. Sediment and mass accumulation rates, calculated from excess 210Pb profiles in the sediment column, show the expected decreasing trend with depth, as usually observed on margins. Mean particulate mass fluxes at 800 and 1700-m depth at site WH are, respectively, 27 and 70 g m?2 a?1.The 210Pb budget points out events of temporary high lateral input of particles. The comparison of mass and 210Pb fluxes between the water column and the seabed indicates that lateral transport plays an important role in particle accumulation on the Aquitanian margin. Regarding the objectives of the ANR-Forclim program, which aims to improve significantly the interpretation of fossil foraminifera signals, as a proxy for hydrological changes in the North Atlantic ocean, these results highlight advection processes must be considered when interpreting fluxes of foraminifers on the Aquitanian margin.  相似文献   

8.
In Brazil, where reefs occur in markedly turbid environments, the relationship between sedimentation/organic matter and corals is poorly known. Thus, the ex situ effects of sediment with and without organic matter over the ΔF/Fm and physical state of Mussismilia braziliensis were analyzed. The ΔF/Fm and coral physical state, evaluated through the susceptibility index to sedimentation (SI), were measured in seven colonies exposed to sedimentation (0–450 mg cm−2 day−1) free of organic matter after 45 days of exposure, and in 12 colonies exposed to sedimentation (0–500 mg cm−2 day−1) with organic matter content (10%), in which case ΔF/Fm was measured after 72 h and SI after 120 h. In both cases there were effects of increasing sedimentation on the SI with no effect on ΔF/Fm. Despite the tolerance to high sedimentation rates shown by this coral, we noted that the presence of organic matter might reduce its tolerance to sedimentation stress.  相似文献   

9.
《Continental Shelf Research》2006,26(17-18):2157-2177
An active upper-canyon system, Eel Canyon, was studied to determine its role as a conduit and/or sink for terrigenous material over decadal timescales and to assess the sedimentary record preserved by transport processes. These data are used to (1) link seasonal fluctuations in sediment transport and deposition to preserved stratigraphic signatures, and (2) assess sediment storage and removal in the upper Eel Canyon (100–850 m water depth) over decadal timescales. Previous research has shown that upper thalwegs commonly experience gravity-driven flows during winter (November–March), due to increased sediment supply from Eel River flooding and intense storms that produce energetic wave/current conditions. Thick winter deposits composed of recently discharged fluvial sediment are formed in upper thalwegs, with distinct short- and long-lived radioisotopic and textural signatures (detectable 7Be and 234Thxs, lowered 210Pb activity, elevated clay content, and physical structures). Box and kasten cores were collected in the upper canyon (thalwegs and walls) to measure these signatures in recent and preserved winter deposits, and to calculate 100-yr accumulation rates. Non-bioturbated deposits (that have signatures indicative of rapid accretion by gravity-driven flows during the winter) are common in the upper canyon thalwegs. Short-lived radioisotopes (7Be and 234Th) show that sediment delivery to the upper thalweg varies temporally, sometimes beginning at the onset of river flooding, and at other times beginning during fall/early winter dry-storm events. In contrast, bioturbated deposits (which do not have signatures indicative of rapid deposition) are found on canyon walls.Non-bioturbated winter deposits are easily identified in the decadal record of thalwegs by decreases in 210Pb activity and increases in clay content. Stacking of multiple years of winter deposits (∼10 cm preserved per winter) results in non-steady-state 210Pb profiles and high decadal accumulation rates. However, down-core changes in 210Pb profiles show that slope failures are actively redistributing these winter deposits. Partial or total removal of multiple winter deposits appears to happen periodically (every ∼13 yr), which will inhibit preservation of the longer decadal record. 100-yr accumulation rates were calculated in the thalwegs from the resulting 210Pb profiles (i.e., the result of winter accretion and decadal removal by failures). Accumulation rates are much higher in thalwegs (1–6 cm/yr) than walls (0.1–0.8 cm/yr), which is likely the result of differing sediment delivery processes (via gravity-driven flows and nepheloid layers, respectively). At least 2.6±1.4% of the Eel River sediment budget is accumulating in the upper canyon over 100-yr timescales. However, this value greatly underestimates the total amount entering the canyon system because minimum accumulation rates were used in many areas (due to limited core length) and slope failures are moving sediment out of the budget area.  相似文献   

10.
《Continental Shelf Research》2006,26(17-18):2260-2280
On October 3, 2002 Hurricane Lili made landfall on a previously studied region of the inner Louisiana shelf as a Category 2 storm with winds over 160 km/h. A week after the hurricane, major impacts of the storm were not evident in the water column except for the lower than expected inshore salinities (∼12 psu) for this time of year, which was characterized by low river discharge. Turbidity profiles were typical of those measured during previous investigations with suspended sediment concentrations >75 mg/L at inshore stations and <50 mg/L in surface waters and offshore. The implication is that the sediments resuspended during the hurricane settled soon after the storm passage. Water column particulate organic carbon (POC) concentrations ranged from 0.1 to over 2.0 mg/L, with the highest concentrations measured near the seabed and in the inshore portions of the study area. Suspended particles were characterized by low organic matter content (%POC of 0.5–2 wt%), low chlorophyll:POC ratios (Chl:POC<4 mg/g) and moderately elevated POC:particulate nitrogen ratios (POC:PN of 10–14 mol/mol), all suggesting their source was locally resuspended seabed sediment rather than from algal biomass or land-derived vascular plant detritus.Post hurricane sediment deposition throughout the study area resulted in a storm layer that ranged from <0.5 to 20 cm in thickness. In most locations sediment accumulation ranged from 3 to 10 cm. The storm deposits were generally composed of silty clays with a coarser, somewhat sandy 1–2 cm basal layer. Surface sediments from the storm layer were characterized by relatively high mineral surface areas (SA of 30–50 m2/g) and elevated OC contents (%OC of 1.0–2.0%). The dispersal of fine sediments following the hurricane resulted in marked changes in the SA and %OC values of surface sediments from offshore locations, which prior to the storm contained coarser, organic-poor particles (SA of 5–15 m2/g and %OC of 0.2–0.6%). The OC:SA and OC:N ratios of storm layer sediments ranged from 0.4 to 0.6 mg OC/m2 and from 10 to 12 mol/mol, respectively, and were comparable to those measured in surface sediments prior to the hurricane. Such similarities in the composition of the organic matter reinforce the idea that the source of the storm deposits was the finer fraction of resuspended seabed sediments, with little evidence for inputs from local land-derived sources or autochthonous algal production. Overall, the magnitude of sediment and organic matter deposition on the seabed after the storm greatly exceeded the annual inputs from the Atchafalaya River and coastal primary production. The combined effects of hurricane-driven erosion and post-storm deposition represent a major perturbation to the benthic community of the region, which is already subject to these types of disturbances due to the combined effects of peaks in river discharge and the passage of storm fronts.  相似文献   

11.
《Continental Shelf Research》2006,26(17-18):2141-2156
A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 km along the Chinese coast. This clinoform is thickest (∼40 m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. 210Pb chronologies show the highest accumulation rates (>3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 °N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south.  相似文献   

12.
《Journal of Geodynamics》2007,43(1):170-186
Stratigraphic and sedimentological studies indicate that Iceland has experienced over 20 glaciations during the last 4–5 Myr, in reasonable agreement with the number of glaciations reconstructed from the ∂18O record in deep-sea sediment. The pattern of glacial erosion was to a large part controlled by constructive volcanic processes resulting in increased topographic relief after 2.5 Myr. Between 2.5 and 0.5 Ma valleys up to 400 m deep were excavated into the Tertiary basalts of eastern and south Iceland with an average erosion rate of 10–20 cm ka−1. During the last 0.5 million years rates of erosion increased to 50–175 cm ka−1, with an additional 200 to over 1000 m of valley excavation. Previous estimates of the rate of landscape erosion during the Holocene vary widely, from 5 to 70,000 cm ka−1. We present new studies that define the rates of landscape denudation during the major part of the Holocene (the last 10,200 years): one based on the Iceland shelf sediment record, the other from the sediment record in the glacier-fed lake, Hvítárvatn. Both studies indicate average Holocene erosion rates of about 5 cm ka−1 similar to our erosion rate estimate for 4–5 Ma old strata that has not been subjected to regional glaciation.  相似文献   

13.
《Continental Shelf Research》2007,27(3-4):338-358
Thirty-three surface sediment samples from cross-shelf transects on the northern Adriatic shelf were collected in December 2000, soon after a 100-yr flood of the Po River, in order to determine the distribution of organic carbon (OC) along the main sediment dispersal system. To evaluate the temporal variability, stations were re-occupied eight times at seasonal intervals until June 2003. Downcore sediment profiles from two sites characterized by high flood deposit thicknesses were also examined to assess the OC variability within the flood layer. In December 2000, the highest contents of OC (up to 1.24 wt%) were measured in front of the main distributary mouths (Pila, Tolle and Gnocca-Goro) where the greatest thicknesses of the flood deposit were recorded. However, the influence of the Po di Gnocca-Goro sediment supply on the OC surface distribution declined after ∼1.5 years from the fall-2000 river flood, probably because these mouths are less active when the water discharge is lower. The δ13C of organic matter was used to trace the dispersal of fluvial OC on the continental shelf. The δ13C values ranged from −25.9‰ to −23.1‰. The fraction of fluvially derived organic particles decreased with increasing water depth according to a radial dispersal pattern around the Po River delta. This pattern persisted in all cruises. δ13C values increased progressively until April 2002, suggesting an increasing marine contribution to the OC content but decreased again following a second minor flood event in November 2002. The molar C/N ratio was on average 10.0±1.6, with slightly lower values in southern and central areas.Assuming contributions from three OC end-members (terrestrial, riverine and marine), a mixing model based on δ13C and the ratio of N to C (statistically more robust than C/N; Goñi, M.A., Teixeir, M.J., Perkley, D.W., 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science 57, 1023–1048) was applied in order to quantitatively assess the OC sources for Po shelf sediments. δ13C is significantly and positively correlated with the marine OC fraction. The terrestrial fraction is inversely correlated with N/C, while the riverine fraction is positively correlated with N/C. The terrestrial OC source was the most abundant end-member (>70%) showing only little temporal variability regardless of the Po River water discharge. Temporal and spatial changes in OC composition suggest that: (a) the Po River prodelta is always dominated from terrestrial OC input; (b) the Po della Pila supplies most terrestrial OC, whilst other tributaries (e.g., Po di Gnocca-Goro) are secondary sources. However, these mouths are as important as the Po della Pila in affecting the riverine OC signature; (c) offshore, biological primary production raises the marine OC contribution.At two sites on the Po River prodelta, the 2000-flood deposit shows slight but consistent compositional changes of organic matter (N/C and δ13C) which can help to recognize other flood events in the sedimentary record. The OC budget for the 2000-flood deposit accounts for a terrestrial+riverine OC supply of 68–162 Gg (109 g) against an OC deposition of 106–162 Gg (excluding the marine fraction), which implies a rapid and efficient sedimentation of the flood material, and scarce or negligible export out the study area. Flood events may thus enhance terrestrial carbon burial, whereas marine carbon arrives more slowly and may be largely mineralized at the sediment–water interface.  相似文献   

14.
The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences.The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka?1, while the lowest values (0.34–0.60 m ka?1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34–0.90 m ka?1) were estimated for the period 146–18 ka BP (oxygen isotopic stages 6–2) and higher (1.46–1.88 m ka?1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10–8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka.During the isotopic stages 8, 10, 11 and 12, almost the 50–60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.  相似文献   

15.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

16.
In the central Western Alps, a combined structural, petrological and 40Ar–39Ar geochronological study of the Modane-Aussois and Southern Vanoise units yields important constraints on the timing of deformation and exhumation of the Briançonnais zone. These data help to decipher the respective roles of oceanic subduction, continental subduction and collision in the burial and exhumation of the main units through time. In the Modane-Aussois unit top to the NW thrusting (D1) was followed by top to the east shearing (D2) interpreted by some as normal faulting and by others as backthrusting. Pseudosection calculations imply that D1 deformation occurred at 1.0 ± 0.1 GPa and 350 ± 30 °C. Analysis of chlorite–phengite pairs yield P–T estimates between 0.15 and 0.65 GPa and between 220 and 350 °C for the D2 event. Phengites along the D1 schistosity (sample M80) yields an 40Ar–39Ar age of 37.12 ± 0.39 Ma, while D2 phengites yield ages of 35.42 ± 0.38 (sample M173) and 31.60 ± 0.33 Ma (sample M196). It was not possible to test whether these ages are altered by excess argon or not. Our interpretation is that the D1/D2 transition occurred at ∼37 Ma at the beginning of decompression, and that D2 lasted until at least ∼32 Ma. Pseudosection calculation suggests that the Southern Vanoise unit was buried at 1.6 ± 0.2 GPa and 500–540 °C. D1 deformation occurred during exhumation until 0.7–10.5 GPa and 370 ± 30 °C. Published ages suggest that D1 deformation possibly started at ∼50 Ma and lasted until ∼37 Ma. D2 deformations started at P–T conditions close to that recorded in Modane-Aussois unit and lasted until 0.2 ± 0.1 GPa and 280 ± 30 °C at ∼28 Ma. The gap of 0.6 ± 0.3 GPa and 150 ± 130 °C between peak metamorphic conditions in the two units was concealed by thrusting of the South Vanoise unit on top of the Modane-Aussois unit during D1 Deformation. Top to the east deformation (D2) affects both units and is interpreted as backthrusting.Based on these data, we propose a geodynamic reconstruction where the oceanic subduction of the Piedmont unit until ∼50 Ma, is followed by its exhumation at the time of continental subduction of the continental Southern Vanoise unit until ∼45 Ma. The Southern Vanoise is in turn underthrusted by the Modane-Aussois unit until ∼37 Ma (D1). Between 37 and 31 Ma the Modane-Aussois and Southern Vanoise units exhume together during backthrusting to the east (D2). This corresponds to the collision stage and to the activation of the Penninic Thrust. In the ∼50 Ma to ∼31 Ma time period the main thrusts propagated westward as the tectonic context switched from oceanic to continental subduction and finally to collision. During each stage, external units are buried while internal ones are exhumed.  相似文献   

17.
《Continental Shelf Research》2006,26(17-18):2073-2091
The eastern part of the chenier plain of the Louisiana coast has been prograding seaward over the last few decades while much of the rest of the Louisiana coast is experiencing high erosion rates. The source of sediment is the Atchafalaya River, which has been delivering sediment to the coastal ocean since the 1940s. Researchers have suggested that the repeated passage of cold fronts during winter and early spring plays an important role in delivering sediment to the coast. A sediment-transport study on the Atchafalaya coast was conducted between October 1997 and March 2001, which included several field experiments in early March, the period of high discharge from the Atchafalaya and frequent cold-front activity. A combination of shipboard profiling and time-series measurements from a bottom tripod and array of wave sensors on the inner shelf has resulted in a data set that illustrates the mechanism of onshore transport. For a cold-front passage sampled in 2001, during pre-front conditions, sediment is resuspended and mixed throughout the water column, with transport rates onshore and to the west of 53 and 184 g s−1 m−1, respectively. Post-front conditions also result in onshore transport due to onshore flow (upwelling) in the lower meter of the water column and formation of a high-concentration bottom layer. Post-front onshore transport rates are 32 g s−1 m−1 and most of the transport occurs in the bottom meter of the water column. The repeated cycling of cold-front passages leads to a positive feedback with transport onshore during both pre- and post-front conditions, and effective attenuation of wave energy over the muddy inner shelf inhibits erosion at the coast. Thus, the chenier-plain coast is experiencing high progradation rates (up to 29 m yr−1), while most of the Gulf coast is eroding.  相似文献   

18.
《Marine pollution bulletin》2012,65(12):2720-2724
Thallium(I) has been added to cultures of the marine macroalga, Ulva lactuca, for a period of 48 h and the accumulation of the metal and its effects on the photochemical efficiency of photosystem II (PS II) measured. Thallium elicited a measurable toxic response above concentrations of 10 μg L−1 in both coastal seawater (salinity 33) and estuarine water (salinity 20). The accumulation of Tl was defined by a linear relationship with aqueous Tl and accumulation factors of about 900 mL g−1 in both media. Thallium accumulated by U. lactuca that was resistant to an EDTA extraction and, by operational definition, internalised, exceeded 90% in both cases. Accumulation and toxicity of Tl in the presence of a ∼105-fold excess of its biogeochemical analogue, potassium, suggests that Tl has a high intrinsic phytotoxicity and that its mode of action involves permeation of the cell membrane as Tl+ through NaCl–KCl co-transporter sites rather than (or in addition to) transport through K+ ion channels.  相似文献   

19.
Unusually warm and saline near-surface inflow was observed in the southern Bay of Biscay (Northeast Atlantic) in autumn–winter 2006–2007. These anomalies were swiftly entrained eastward through the Iberian Poleward Current flowing over the slope and shelf. Here, we present a quasi-synoptic three dimensional view of this event, which started as early as August 2006. In situ hydrological and Lagrangian measurements were used to describe its characteristics. The warm anomaly was surface intensified over the shelf, with surface temperature above 17 °C, a monthly anomaly over 1 °C compared to the 1994–2006 period. The saline anomaly was maximum around 100–200 m deep, over the upper slope, with values above 35.9 psu. Slope and shelf were seen to exhibit a complex structure of eastward (poleward) and westward (equatorward) currents. Maximum currents, observed near surface, over the upper slope in the eastern part of the Bay of Biscay, were determined to exceed 1.3 m s?1. This current system eventually became unstable, thereby promoting strong exchange of properties between coastal and deep ocean. The event was coincident with abnormal southerly wind conditions west of Iberia in autumn 2006, and with the unusually warm autumn–winter weather over western Europe. A dynamical analysis relying on wind forcing west and north of Iberia is proposed.  相似文献   

20.
Contamination with As, Cd and Hg, their spatial and temporal distribution are reported from the coastal wetland sediments of the northern Beibu Gulf, South China Sea. The content of As, Cd, Hg and TOC in surface sediments is 8.1 ± 5.8 μg g?1, 0.08 ± 0.14 μg g?1, 0.034 ± 0.028 μg g?1 and 0.45 ± 0.39%, respectively. The mean sedimentation rates are 0.93–1.37 cm year?1 during 1920s to 2008 determined by 210Pb and 137Cs dating in three cores. The vertical profiles of As, Cd and Hg content in the cores retrieved from Qin and Nanliu River estuaries show increasing trends during 1985–2008 due to anthropogenic impact caused by local economic development. Locally the surface sediments have potential ecological risk of As to benthos according to the NOAA sediment quality guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号